Inorganic contaminants in Soils

Itai-itai: Cadmium Human Health Effects

Arsenicosis: Arsenic Human Health Effects

Minamata: Methylmercury Human Health Effects

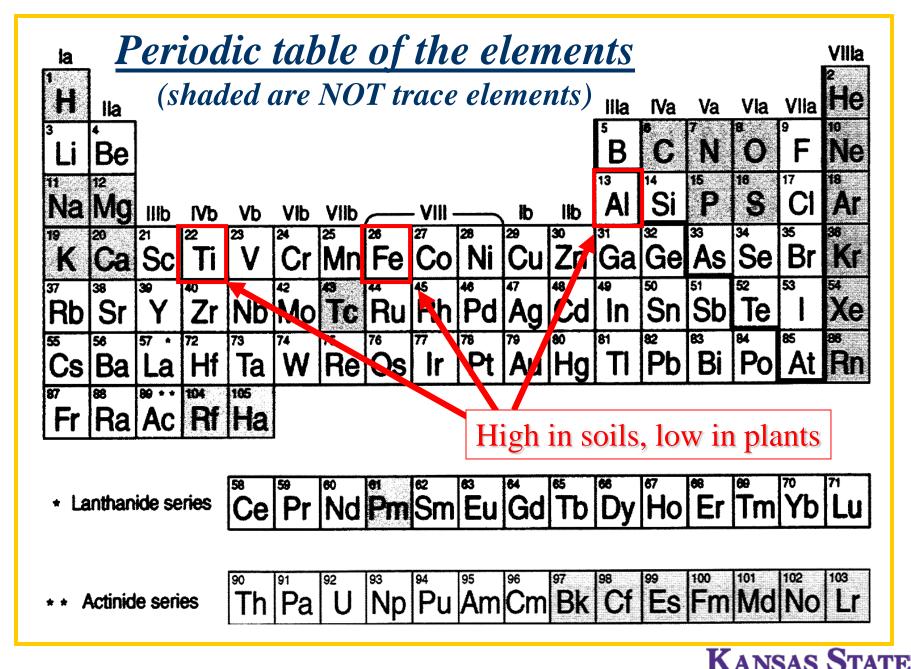
Phytotoxicity- Zinc Ecological Health Effects

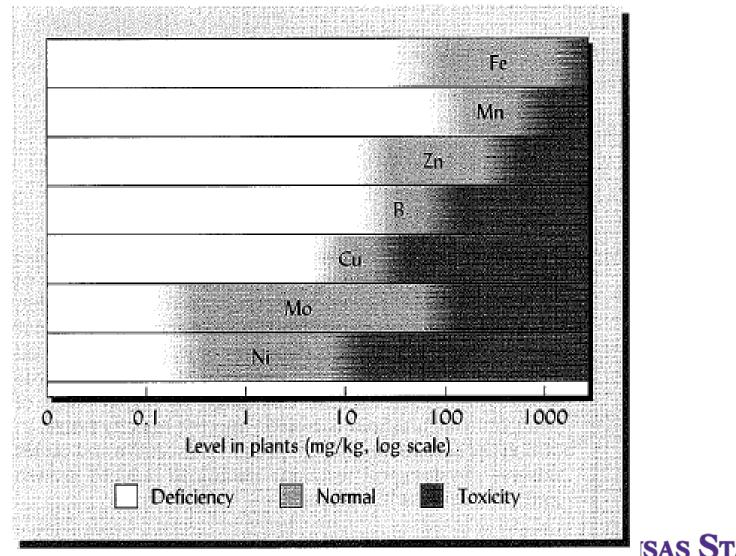
Phytotechnology with Biomass Production CHE 650 Hazardous Waste Engineering Seminar January 9-11, 2018

Ganga Hettiarachchi Department of Agronomy

Terminology

- Trace elements elements that are normally present at relatively low concentrations in soils or plants. They may or may not be essential for the growth and development of plants, animals, or humans
- Related terms heavy metals, micronutrients, trace metals, microelements, minor elements, trace inorganics
- 78 elements in the periodic Table
- Short List As, B, Be, Cd, Co, Cr, Cu, F, Fe, Hg, I, Mn, Mo, Ni, Pb, Se, Sn, V, and Zn




Figure 9.1

Plant essential elements (nutrients)

Nutrient – implies that the element or substance is essential for the growth and development of some organism

	Element	Chemical Symbol	Where obtained
Macro-	Carbon	С	Air/ water
Nutrients	Hydrogen	н	Air/ water
	Oxygen	0	Air/ water
	Nitrogen	Ν	Soil/ air
	Phosphorus	Р	soil
	Potassium	К	soil
	Calcium	Ca	soil
	Magnesium	Mg	soil
	Sulfur	S	soil
Micro-	Iron	Fe	soil
Nutrients	Manganese	Mg	soil
	Zinc	Zn	soil
	Copper	Cu	soil
	Boron	В	soil
	Molybdenum	Мо	soil
	Chlorine	CI	soil
	Cobalt	Со	soil
	Nickel	Ni	soil

Deficiency, normal, and toxicity levels in plants for seven micronutrients

RS

Brady and Weil, 2002

TABLE 1.1

The Elemental Content (Median and Range) of Uncontaminated Soils Collected from around the World and the Mean Elemental Content of the Earth's Crust (the Valences and Aqueous Speciation of the Elements in Soil Environments Are Also Shown)

		mg kg-1*			
Element	Atomic Mass ^b	Soil	Earth's Crust	٤R۴	Important Chemical Species and Oxidation States ^d
	The <i>l</i>	Most Abundant Constituents of	Organic Soil	s and Soi	l Organic Matter
0*	15.9994	490,000	474,000	1.0	$O^{0}[O_{2}(g)], O^{-1}[H_{2}O] \text{ (oxidant:} O_{2}(g) + 4e^{-} + 4H^{+} = 2H_{2}O)$
C*	12.011	20,000 (7,000-500,000)	480	42	organic, C ^{TV} [CO ₃ ²⁻ , HCO ₃ ⁻ , H ₂ CO ₃ ⁰ , CO ₂ (g)]
N* .	14.00674	2,000 (200–5,000) (- ¹ / ₁₀ C)	25	80	organic, N^{\vee} [NO ₃ ⁻], N^{-m} [NH_{4}^{+} , $NH_{3}(g)$]
P*	30.97376	800 (35–5,300) (~ ¹ / _s N)	1,000	0.80	organic, P ^v [HPO ²⁻ , H ₂ PO ⁻]
S*	32.006	700 (30–1,600) (- ¹ / _s N)	260	2.7	organic, S^{V1} [SO ₄ ²⁻], S^{-11} [H ₂ S(g), HS ⁻ , S ²⁻]
		The Most Abundant El	ements in M	ineral So	ils
Si*	28.0855	330,000 (250,000-410,000)	277,000	1.2	Si [™] [H, SiO⁰]
Al	26.98153	71,000 (10,000-300,000)	82,000	0.87	Al ^{III} $[Al^{3+}, AlOH^{2+}, Al(OH)_2^+, Al(OH)_2^+, Al(OH)_1^0, and Al(OH)_1^-]$
Fe*	55.845	40,000 (2,000-550,000)	41,000	0.96	Fe^{II} [Fe ²⁺], Fe ^{III} [Fe ³⁺ , FeOH ²⁺ , Fe(OH) ₂ ⁺ , Fe(OH) ₃ ⁰ , and Fe(OH) ₄ ⁻]

UNIVERSITY

Source: Essington, 2015. Soil and Water Chemistry: An Integrative Approach KANSAS STATE

TABLE 1.1

The Elemental Content (Median and Range) of Uncontaminated Soils Collected from around the World and the Mean Elemental Content of the Earth's Crust (the Valences and Aqueous Speciation of the Elements in Soil Environments Are Also Shown) (Continued)

		Other A	Major Elements		1
Ca*	40.078	15,000 (700-500,000)	41,000	0.37	Ca ²⁺ .
K*	39.0983	14,000 (80-37,000)	21,000	0.67	K*
Mg*	24.305	5,000 (400-9,000)	23,000	0.22	Mg ²⁺
Na*	22.98977	5,000 (150-25,000)	23,000	0.22	Na ⁺
т	47.867	5,000 (150-25,000)	5,600	0.89	Ti ^{rv}
Mn*	54.938	1,000 (20-10,000)	950	1.1	Mn ²⁺
		Micro an	d Trace Element	5	
Ba	137.327	500 (100-3,000)	500	1.0	Ba ²⁺
Zr	91.224	400 (60-2,000)	190	2.1	Zr ^{rv}
Sr	87.62	250 (4-2,000)	370	0.68	Sr ²⁺
F*	18.9984	200 (20-700)	950	0.21	F
Cl*	35.453	100 (8-1,800)	130	0.77	CI
Zn*	65.39	90 (1900)	75	1.2	Zn ²⁺
V*	50.9415	90 (3-500)	160	0.57	V^{IV} [VO ²⁺], V^{V} [VO ²⁺ ₂ , VO ₂ (OH) ⁻ ₂ , VO ₃ (OH) ²⁻]
Cr*	51.9961	70 (5-1,500)	100	0.70	Cr^{H} [Cr ³⁴], Cr ^{VI} [HCrO ₄ , CrO ₄ ²⁻ , Cr ₂ O ₇ ²⁻]
Ni*	58.6934	50 (2-750)	. 80	0.63	Ni ²⁺
РЪ	207.2	35 (2-300)	14	2.5	Pb ²⁺
Cu*	58.9332	30 (2-250)	50	0.60	Cu ²⁺
Li	6.941	25 (3-350)	20	1.3	Li*
B*	10.811	20 (2-270)	10	0.50	B ^{III} [B (OH) ₃ , B (OH) ₄]
Br	79.904	10 (1-110)	0.37	27	Br
Co*	58.9332	8 (0.05-65)	20	0.4	Co ²⁺
					(continue)

(continuea) 📊

TABLE 1.1

The Elemental Content (Median and Range) of Uncontaminated Soils Collected from around the World and the Mean Elemental Content of the Earth's Crust (the Valences and Aqueous Speciation of the Elements in Soil Environments Are Also Shown) (Continued)

_		mg kg ⁻¹⁴			· · ·
Element	Atomic Mass ^b	Soil	Earth's Crust	ER ^c	Important Chemical Species and Oxidation States ^d
		Micro an	id Trace Element	s	
As*	74.9216	6 (0.1–40)	1.5	4.0	As^{III} [HAs O_3^2], As^{V} [HAs O_4^2], H ₂ As O_4^{-}]
Mo*	95.94	1.2 (0.1-40)	1.5	0.80	Mo ^{VI} [MoO ²]
Se*	78.96	0.4 (0.1–2)	0.05	8.0	Se ^{IV} [HSeO ₃ , SeO ₃ ²⁻⁷], Se ^{VI} [SeO ₄ ²⁻⁷], Se ^{-II} [Se ²⁻⁷]
Cđ	112.411	0.35 (0.01-2)	0.11	3.2	Cd ²⁺
Hg	200.59	0.06 (0.01-0.5)	0.05	1.2	Hg^{II} [Hg(OH) ⁰ ₂], Hg ¹ [Hg ²⁺], Hg ⁰ [Hg(<i>l</i>), Hg(g)]

* Soil elemental concentrations represent the median elemental content and range (in parentheses). Elemental content values for the Earth's crust represent the mean. Data are from Bowen (1979). Additional tabulations of the elemental content of soils have been compiled by Helmke (2000).

^b Units are g mol⁻¹.

" ER is the enrichment ratio and is equal to the median soil content of an element divided by the mean Earth's crust content.

^d Soluble complexes are not included.

* Denotes an essential or beneficial element for plants or animals.

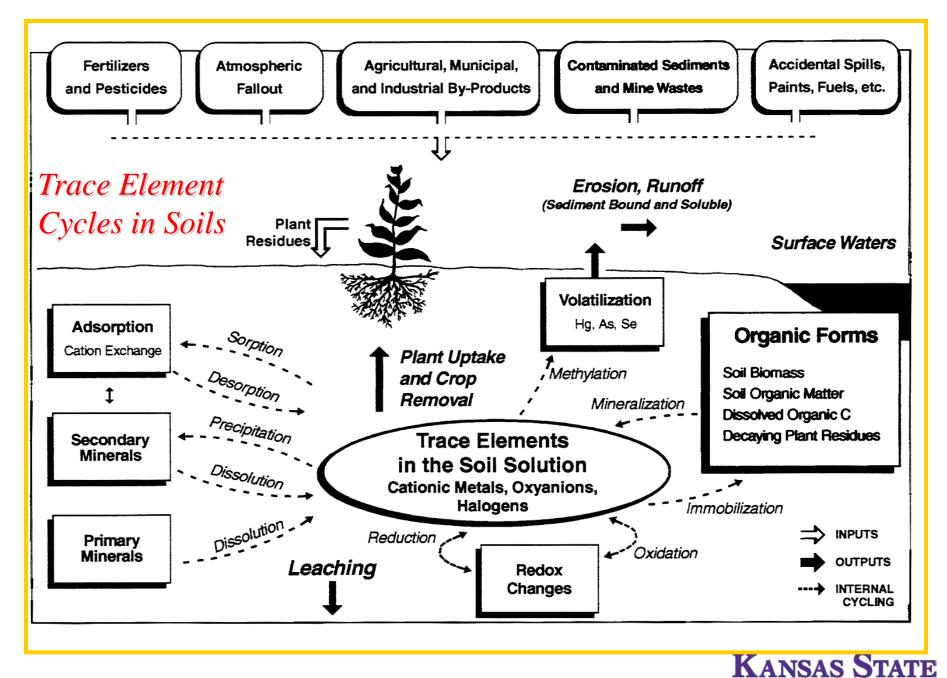
Additional source (recent)- Geochemical and Mineralogical Data for Soils of the Conterminous United States: <u>http://pubs.usgs.gov/ds/801/</u>

Alternative Classification Based on Form in Soil Solution

- Cationic Metals: Ag⁺, Cd²⁺, Co²⁺, Cr³⁺, Cu²⁺, Hg²⁺, Ni²⁺, Pb²⁺, Zn²⁺
- Oxyanions: AsO₄³⁻, B(OH)₄⁻, CrO₄²⁻, MoO₄²⁻, HSeO₃⁻, SeO₄²⁻
- Anions: F⁻, Cl⁻, Br⁻, l⁻

Terminology

- Contaminant implies that the concentration of a substance is higher than would occur naturally but does not necessarily mean that the substance is causing harm of any type
- Pollutant implies that the concentration of a substance is higher than would occur naturally and that <u>substance is causing harm of some type</u>


Sources of Inorganics Contamination for Soils

- Mining and smelting of trace elements
- Mining of other materials such as coal
- Land application of wastes animal manures, biosolids, industrial wastes
- Motor vehicles Zn and Cd from tires and Ni, Cr, V, W, and Mo from steel
- Agricultural sprays and soil amendments Pb arsenates, Cu sulfates, etc.
- Leaded paint residues
- Military activities, etc.

Global Trace Element Cycles

- The majority of most trace elements reside in the lithosphere
- The amounts present in the hydrosphere are small but important environmentally
- Gaseous forms exist but are generally not important
- Atmospheric deposition of trace elements is an important source of contamination but this represents the deposition of particulate matter

Source: Pierzynski et al., 2005

NIVERSITY

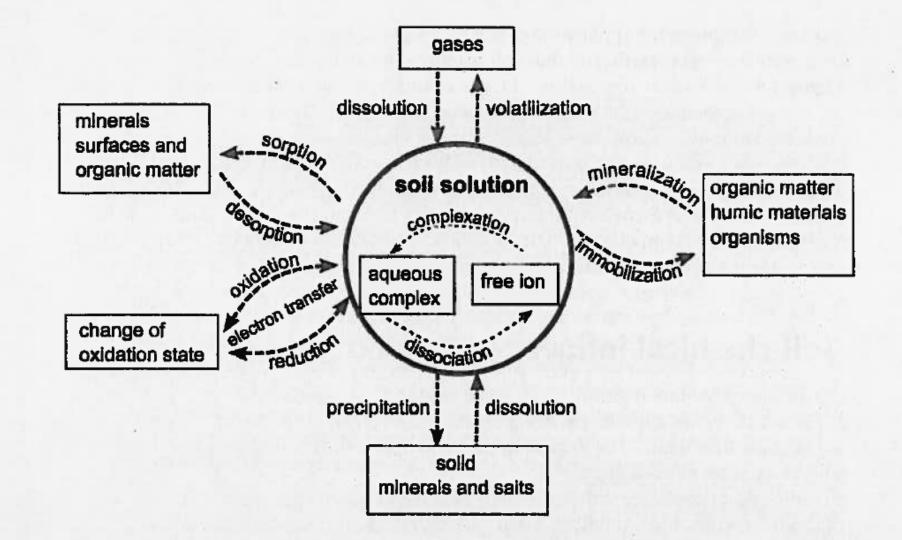


Figure 1.12 Chemical reactions in soil. Soil solution is in the center because most reactions occur between soil solution and either organisms, soil air, or solid phases.

Transformations in Soils

Source: Strawn et al., 2015 Soil Chemistry

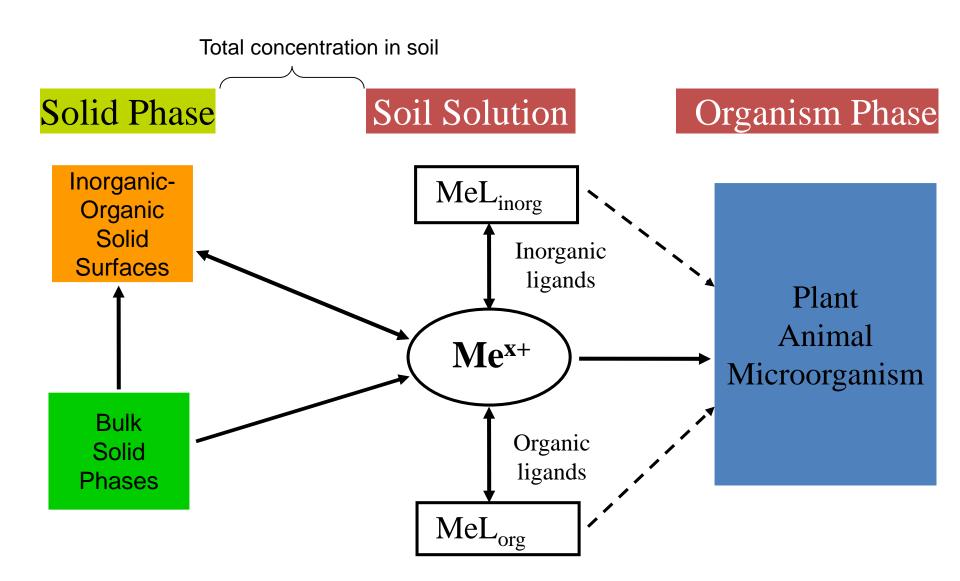
Important transformation processes

- Adsorption/ desorption
 - important because trace elements are present at low concentrations
- Precipitation/ dissolution
 - many trace elements form insoluble compounds in soils (i.e., the formation of secondary minerals)
- Oxidation/ reduction
 - Some elements undergo oxidation/reduction reactions
 - All most all elements affected by oxidation/reduction of Fe, Mn and S
- Mineralization/ immobilization
- Volatilization

Important for some trace elements (As, Hg and Se)

Key point

 Bioavailability is very important. Bioavailability determines the risk to organisms. We may want to reduce bioavailability as part of a remediation strategy


KANSAS STATE

Bioavailability: Definitions

• A measure of the fraction of the chemical(s) of concern in environmental media that is accessible to an organism for absorption

American Society for Testing and Materials, 1998

The most biologically active species are usually the free, unassociated ions. A knowledge of solid and solution speciation is important.

Bioavailability and speciation are linked

Definition - speciation

 Determination of the exact chemical form or compound in which an element occurs in a sample, for instance determination of whether arsenic occurs in the form of trivalent or pentavalent ions or as part of an organic molecule, and the quantitative distribution of the different chemical forms that may coexist.

International Union for Pure and Applied Chemistry, 1997

Lead speciation in soil

<u>Form</u>	<u>Example</u>	
A. Free metal	Pb ²⁺ (lead ion)	High
B. Soluble complexes	Pb(OH) ¹⁺ ; Pb(OH) ₂ ⁰ ; PbCO ₃ ⁰ , PbCl ⁺ Pb-citrate	
C. Polymeric organic complexes	Pb – humic acid	
D. Adsorbed or incorporated metal onto soil minerals	Pb bound on, or in, microparticulate oxides or aluminosilicates	
F. Precipitated metal form	Pb phosphate, Pb carbonate, Pb sulphate, Pb sulfide	Low Availability

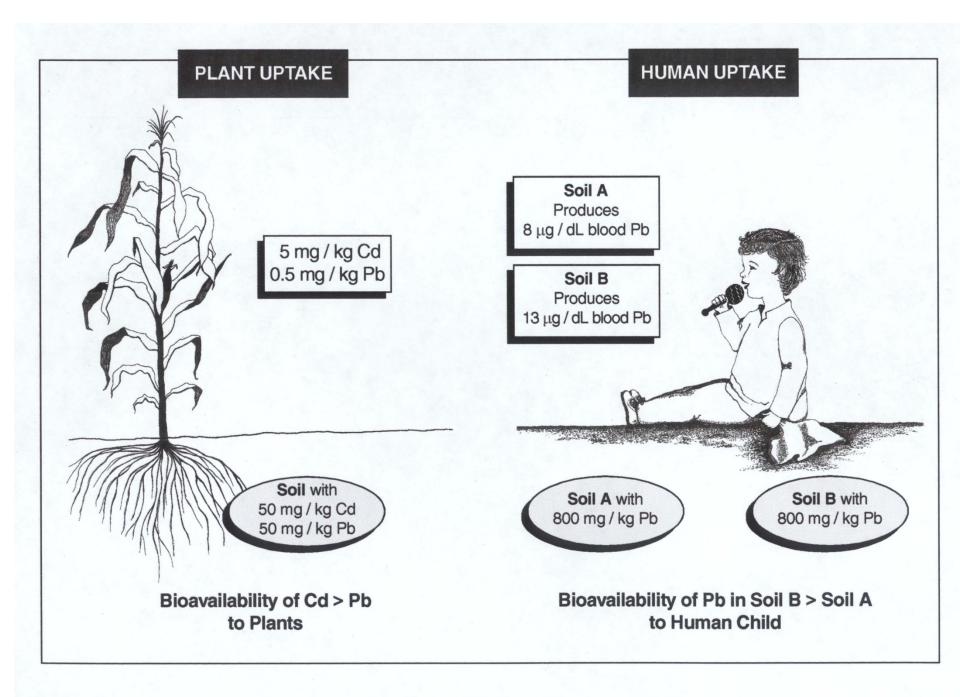
Trace Element Bioavailability in Soils

 In order for a TE to be available to an organism for uptake, it must be in a soluble form in solution. Therefore, factors that influence sorption will influence bioavailability.

Lead speciation in soil solution

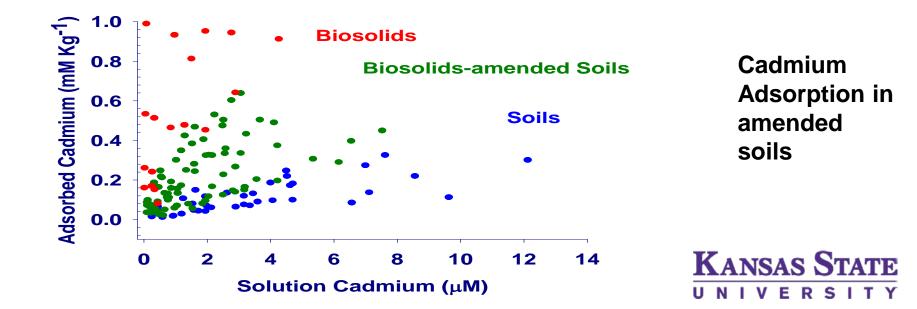
<u>Form</u>	<u>Example</u>
A. Free metal	Pb ²⁺
B. Hydroxo- complexes	Pb(OH) ¹⁺
C. Simple inorganic complexes	PbCO ₃ ⁰ , PbCl ⁺ , PbSO ₄ ⁰
D. Simple organic complexes	Pb-citrate
E. Polymeric organic complexes	Cd – fulvate
F. Mineral colloidal form	Pb bound on, or in, microparticulate oxides or aluminosilicates

Relative Bioavailability of Pb


Pb Source	Test Organism	Relative Bioavailability
Galena (PbS)	Swine	0.01
Leaded paint	Swine	0.82
Joplin, MO (soil)	Rat	0.34
Joplin, MO (soil + P)	Rat	0.24
Bunker Hill, ID (fasting)	Humans	0.26
Bunker Hill, ID (fed)	Humans	0.03

Source: Pierzynski et al., 2005

Trace Element Bioavailability in Soils


- Significant environmental effects from TEs
- Total soil TE concentrations do not correlate with organism response
- TE effects related to bioavailability
- Understanding TE bioavailability allows:
 - Better prediction of TE toxicity and deficiency
 - Prediction of exposure routes
 - Remediation strategies

Factors That Influence TE Sorption and Bioavailability

- Cation exchange capacity clay content, OM content
- Fe/Al/Mn (hydr)oxides participate in anion adsorption

Addition of Soil Amendments Can Reduce Contaminant Bioavailability

Metal contaminated soils- unamended With Lime With Beringitemodified aluminosilicate

With Red Mud Fe oxide rich residue

Courtesy of CSIRO, Land & Water, Australia

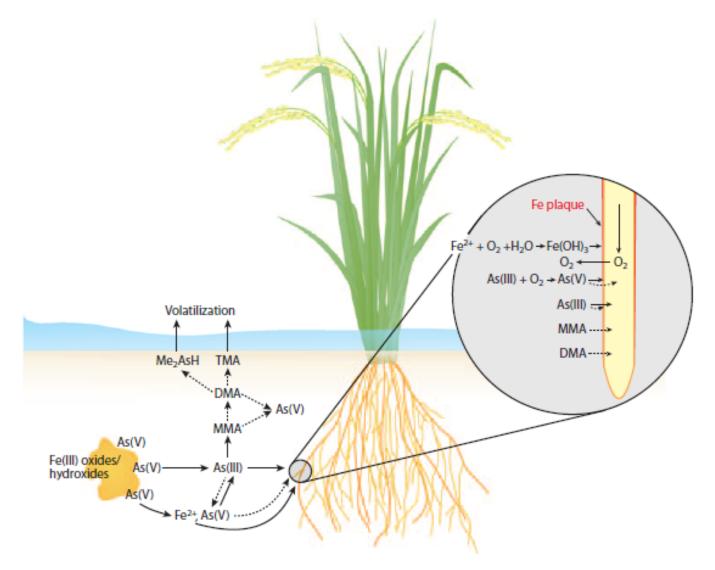
Factors That Influence TE Sorption and Bioavailability

- pH the master variable. pH has a profound effect on all sorption mechanisms
 - Bioavailability of cationic metals increases with decreasing pH
 - Bioavailability of some oxyanions decreases with decreasing pH

Concentrations (mg/kg) of selected elements in Alfalfa tissue as influenced by soil pH

рН	Cd	Cu	Ni	Мо
6.0	0.8	17.7	1.9	193
7.0	0.6	16.8	0.8	342
7.7	0.4	16.0	0.8	370

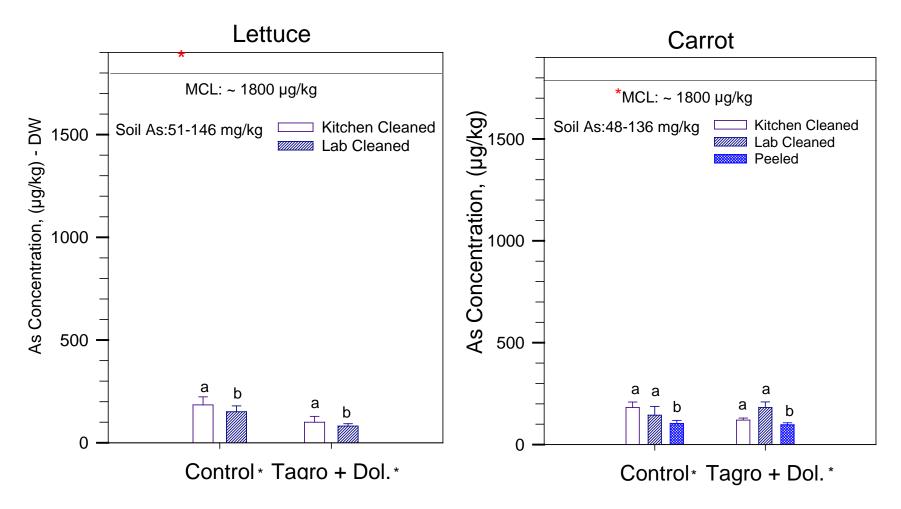
Source: Pierzynski et al. 2005. Soils and Environmental Quality



Factors That Influence TE Sorption and Bioavailability

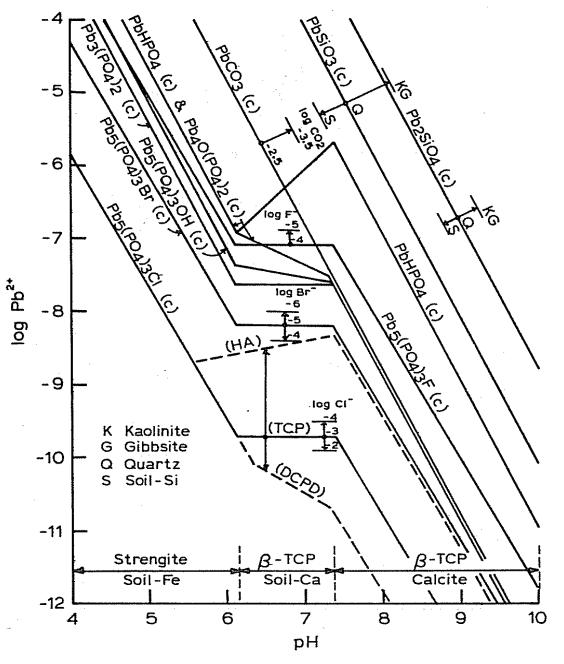
- Redox A change in oxidation state (and chemical form) can make an element more or less likely to undergo sorption
 - Direct effects
 - SeO₄²⁻ versus SeO₃²⁻ versus Se^o versus Se²⁻
 - AsO₄-3 versus H₃AsO₃⁰
 - Indirect effect
 - Reductive dissolution of Fe/Mn minerals
 - Reprecipitaion of Fe/Mn oxides or sulfides

Example: Arsenic in rice (flooded paddy soil)


Figure 1

Arsenic mobilization and transformation in flooded paddy soil and interactions in the rice rhizosphere. Arrows with solid and broken lines indicate dominant and minor processes, respectively. For more details of the As methylation pathway, see **Figure 4***b*.

Source: Zhao, McGrath, Meharg, 2010. Annu, Rev. Plant Biol. 61: 535-559.


Arsenic in lettuce and carrot Garden soils (well-aerated)

Vertical bars represent the means of four replicates

* Estimated using oral exposure daily reference dose limit for inorganic As

Defoe et al., 2014. J. Environ. Qual. 43: 2064-2078.

C

Fig. 20.2 The solubility of various lead silicates and phosphates compared to PbCO₃(cerussite) STATE when phosphate is controlled by various solid phases as indicated and CO₂(g) is 0.003 atm.

)

Comparative Results-for P amendments: Animal, *In vitro* & Human

	Animal* (Swine)	In vitro** (pH 2.3)	Human ^{***}
% Reduction in Bioavailability	38	38	69

*Casteel et al. (2001), ** Ruby et al. (2001),

***Graziano et al. (2001)

Scientific evidence clearly shows P amended Pb-contaminated soil would cause less of an increase in blood Pb concentrations upon ingestion by children than unamended soil

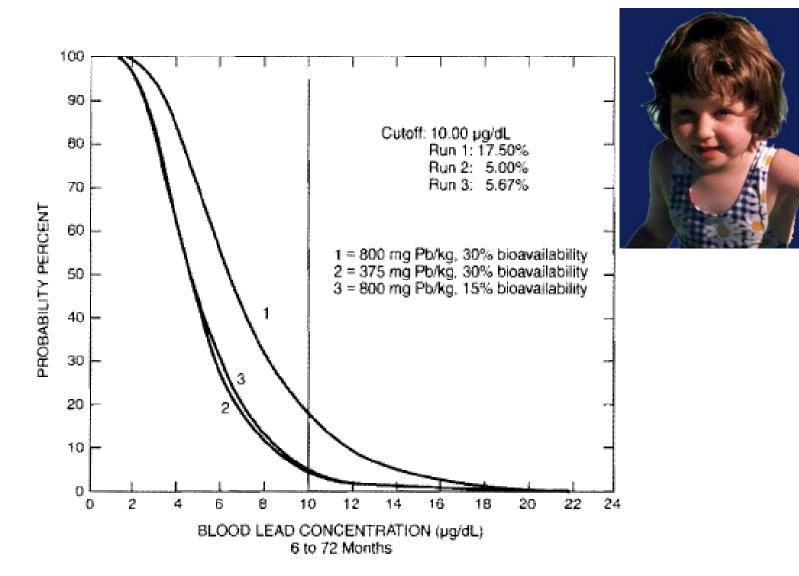
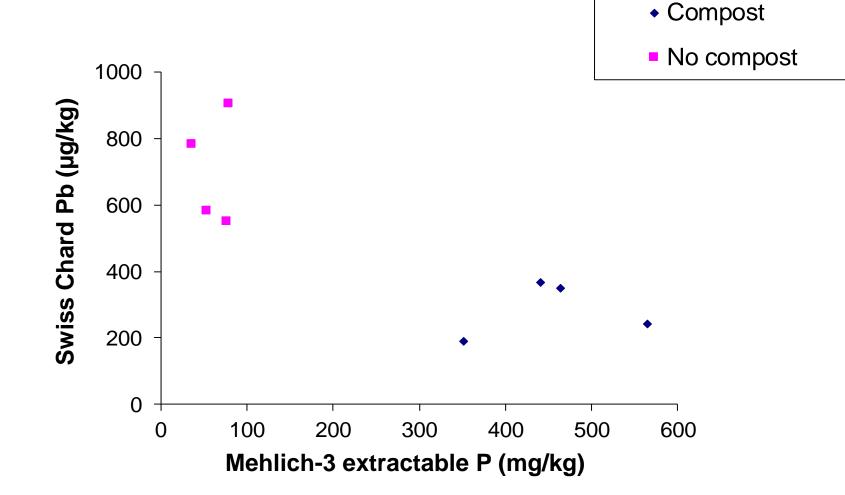
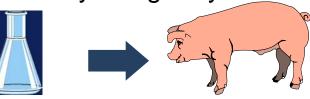



Figure 13.6 IEUBK model output showing the influence of soil Pb bioavailability on the proportion of children 6 to 72 months of age who have >10 µg/dL blood Pb concentration. Curve 1 assumes 800 mg Pb/kg soil and 30% bioavailability while curve 3 uses 800 mg Pb/kg and 15% bioavailability. Curve 2 uses 30% bioavailability and shows that soil Pb cannot exceed 375 mg/kg to have no more than 5% of the children with >10 µg/dL blood Pb concentration.

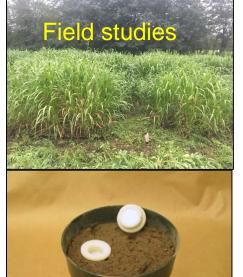

Swiss Chard Pb versus available P in Soils (Wash. Wheatley, Kansas City, MO)

KANSAS STATE

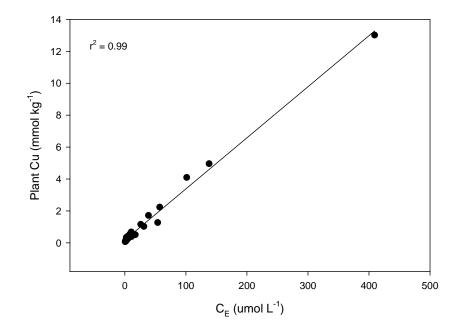
Measuring bioavailability

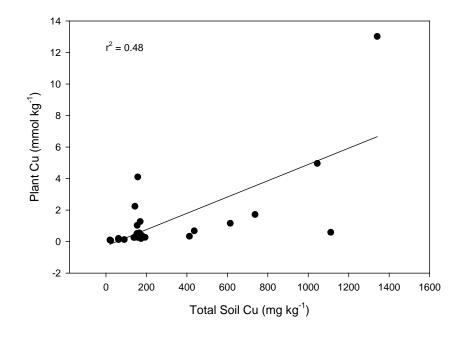

Humans: Animal feeding studies

Surrogate methods:


In vitro methods – such as Physiologically based extraction test

(PBET) procedure


Plants: Plant uptake studies

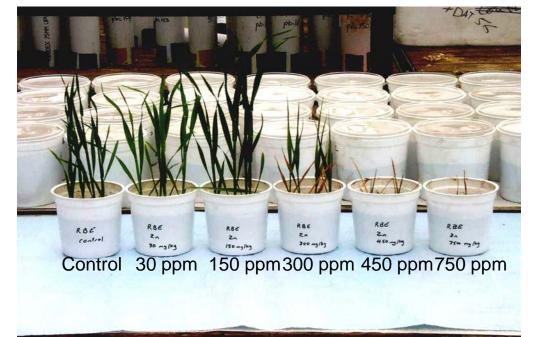

Various extractions

Diffusive Gradients in Thin Films (DGT) KANSAS STATE

Source: Zhang et al., 2001

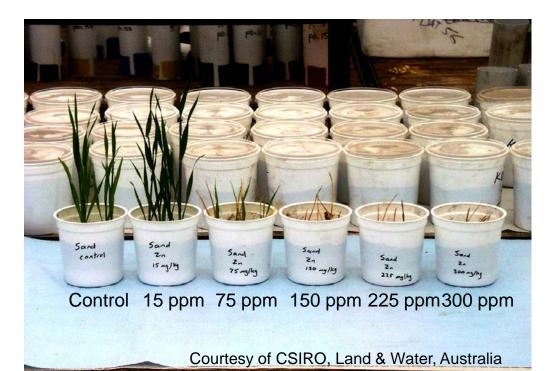
Addition of Soil Amendments Can Reduce Contaminant Bioavailability

Metal contaminated soils- unamended With Lime With Beringitemodified aluminosilicate

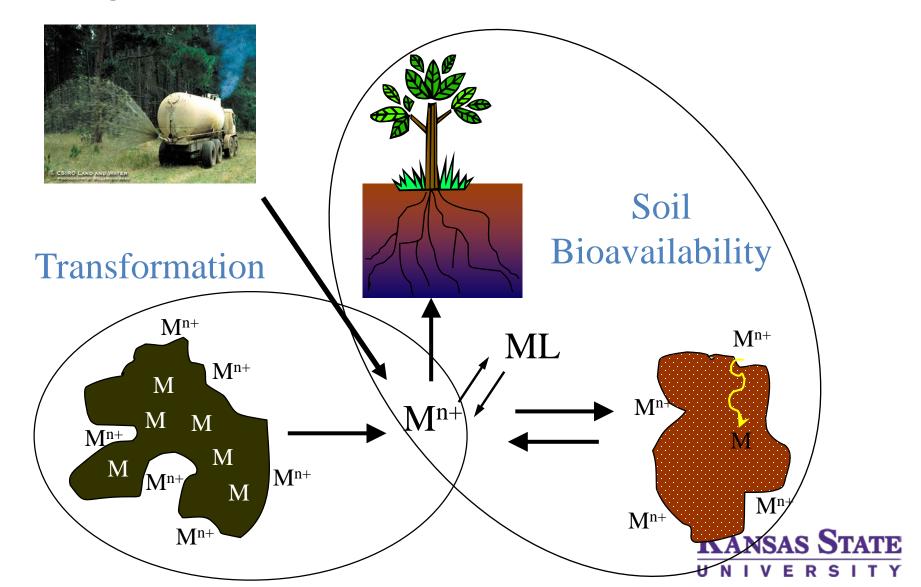

With Red Mud Fe oxide rich residue

Courtesy of CSIRO, Land & Water, Australia

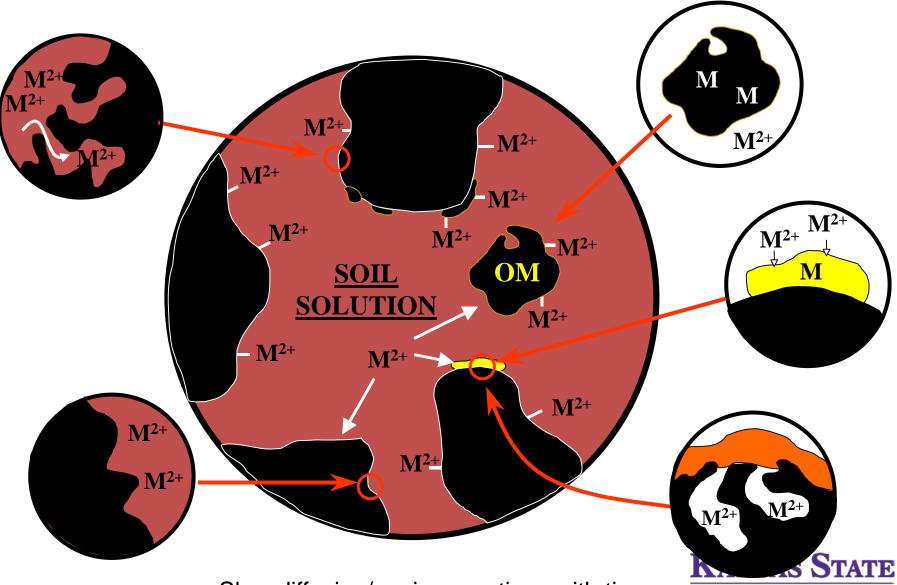
Other Key Points


Other key points: Soil type affects bioavailability

Clayey Soil


Sand

KANSAS STATE


UNIVERSITY

Contaminant form affects bioavailability Example: Biosolids vs. metal salt

Nutrient/contaminant attenuation in soil

Slow diffusion/ageing reactions with time

Ε

S

Nutrient/contaminant attenuation in soil

Example: root elongation on soil contaminated by Cu

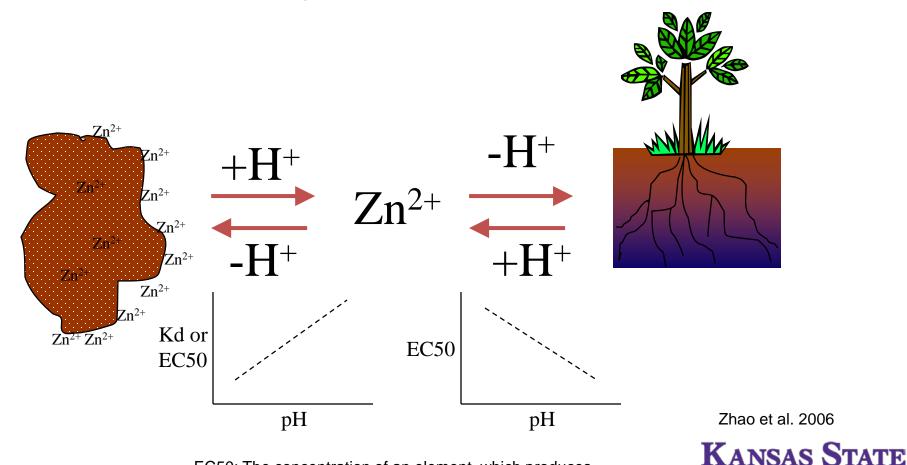
Field transect

T Y

Fresh spike

Species differences in tolerance

Rice


Barley

Soil chemistry alone is not enough

 We know that pH is important in modifying metal toxicity – however 2 effects are apparent

EC50: The concentration of an element, which produces 50% of the maximum possible effective response for that element

ER