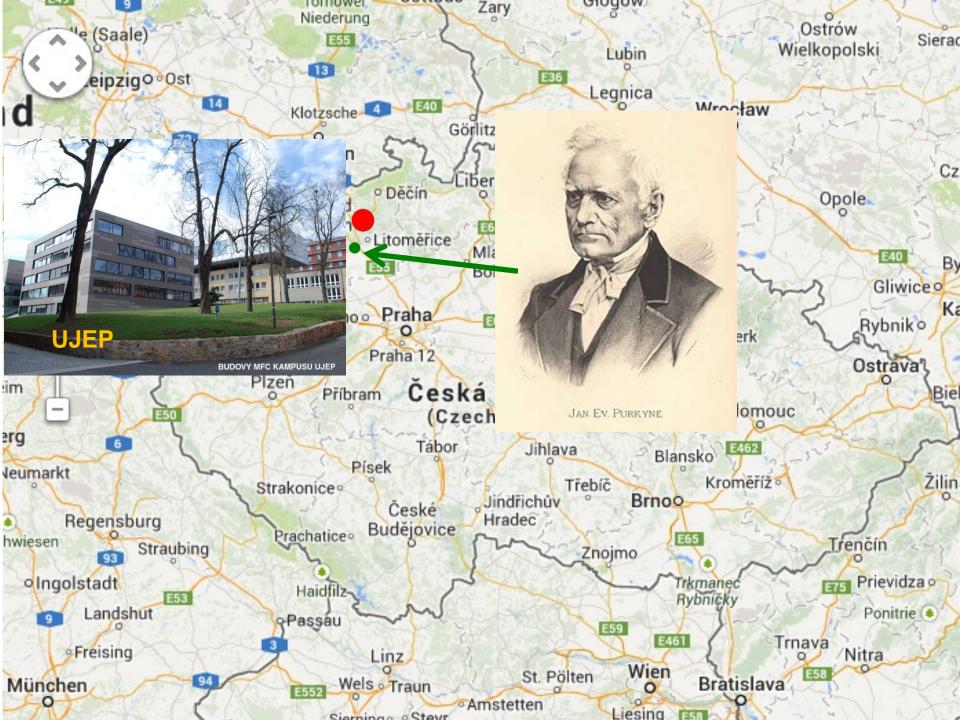
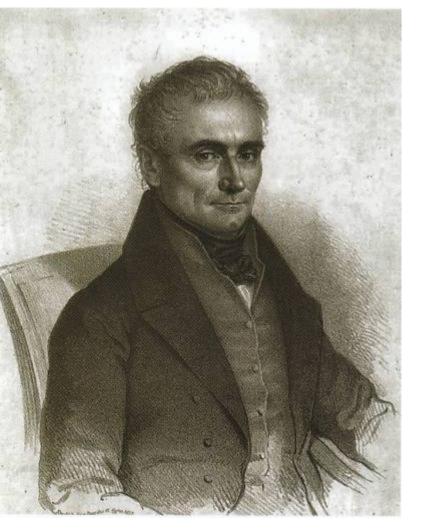
JAN EVANGELISTA PURKYNĚ UNIVERSITY IN ÚSTÍ NAD LABEM

Biological Aspects of Soil Ecology (implications on phytoremediation with *Miscanthus*)


Josef Trögl, Valentina Pidlisnyuk, Diana Nebeská, Pavel Kuráň, Jan Popelka

J.E. Purkyně University in Ústí nad Labem Faculty of Environment


josef.trogl@ujep.cz

Jan Evangelista Purkyně (1787-1869),

Born in Libochovice, Czech Republic

One of the founders of biology, embryology, histology, pharmacology, anatomy, anthropology, famous in physiology

UJEP

- ~9 000 students, ~900 academic staff
- 8 Faculties, wide range of disciplines
 - Faculty of Social and Economic Studies
 - Faculty of Art and Design
 - Faculty of Mechanical Engineering
 - Faculty of Environment
 - Faculty of Philosophy
 - Faculty of Education
 - Faculty of Science
 - Faculty of Health Studies

Protected area České středohoří

Protected area České středohoří

Protected area Děčínské stěny

National park Czech-Saxonian Switzerland

National park Czech-Saxonian Switzerland

Surface brown-coal mine

Outline

- 0. Motivation
- 1. Ecological roles of soil microorganisms
- 2. Plant-microbe symbioses and interactions
- 3. Rhiosphere and root exudates
- 4. Nitrogen fixation
- 5. Mycorhizza
- 6. Extracellular metabolism
- 7. Overview of methods for study of soil microbial communities
- 8. A few research results

0. Motivation

- Recent research on phytoremediation of military sites using second generation biofuel crops
 - Miscanthus x giganteus
- Multiple aims:
 - phytoremediation of contamination
 - production of energetic biomass
 - improvement of soil properties
 - ideally together
- Soil organisms play essential roles in these processes

JAN EVANGELISTA PURKYNĚ UNIVERSITY IN ÚSTÍ NAD LABEM

Faculty of the Environment

Phytovolatilization Transformation of contaminants into volatile compounds and release in the atmosphere through evapotranspiration

Phytotransformation

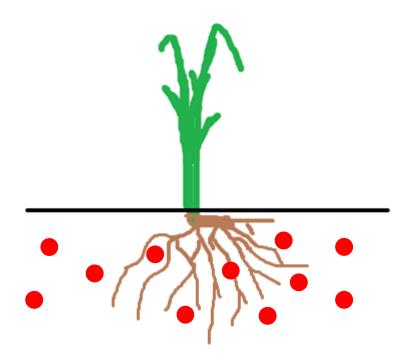
Degradation or mineralization of complex organic compounds into simpler compounds less/non-toxic, and integration into plant tissues

Phytoextraction

Absorption of contaminants by roots and concentration in harvestable parts. Fungi and bacteria contribute to the mobilization and translocation of contaminants to the roots

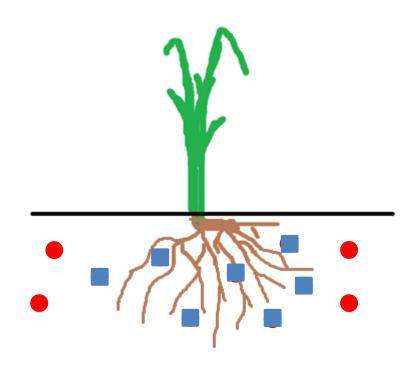
Rhizoremediation

Degradation of pollutants by microorganisms, such as bacteria and fungi.

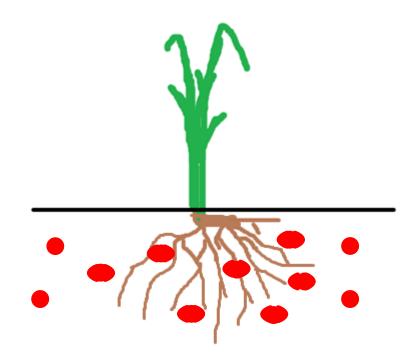

Phytostabilization

Sequestration or immobilization of contaminants in root cells and mycorrhizal fungi hyphae

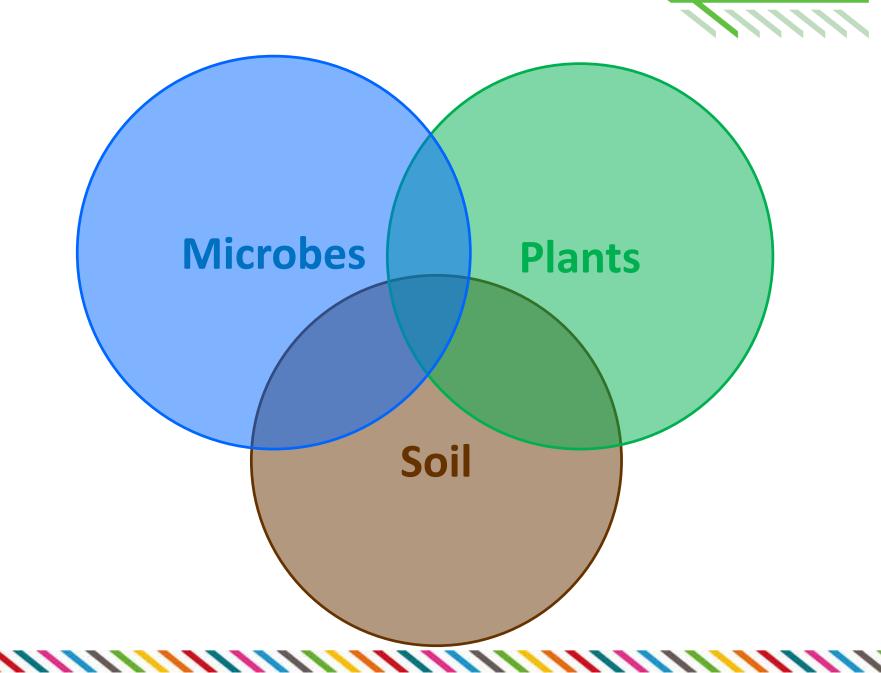
Rohrbacher et al. (2016)


Phytoextraction

=uptake of pollutants from soil to plants


Phytostabilization

echanging pollutants to less bioavailable / less toxic

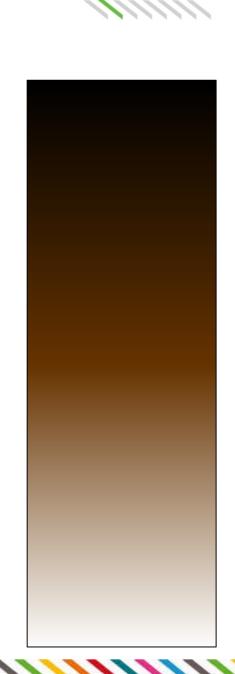

Rhizodegradation

 =biodegradation of pollutants by microorganisms supported by plant roots

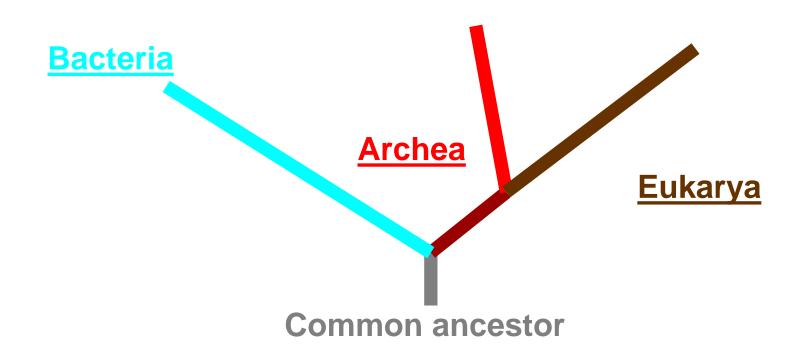
JAN EVANGELISTA PURKYNĚ UNIVERSITY IN ÚSTÍ NAD LABEM

Faculty of the Environment

JAN EVANGELISTA PURKYNĚ UNIVERSITY IN ÚSTÍ NAD LABEM

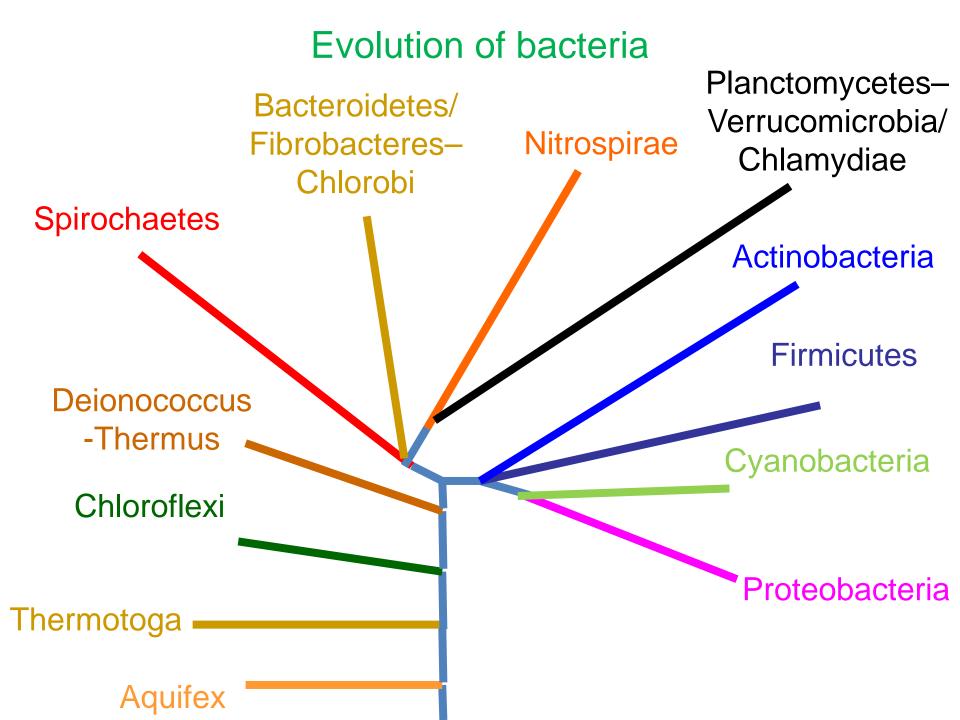


- 1. Soil microorganisms
- Ecological roles of soil microorganisms
 - decomposition (biodegradation, mineralization) of organic substances
 - ~90% decomposed by MO
 - production of organic substances (humus, enzymes, antibiotics...)
 - fixation of nitrogen
 - assimilation of inorganic substances
 - adaptation of environment (pH, temperature...)
 - symbioses

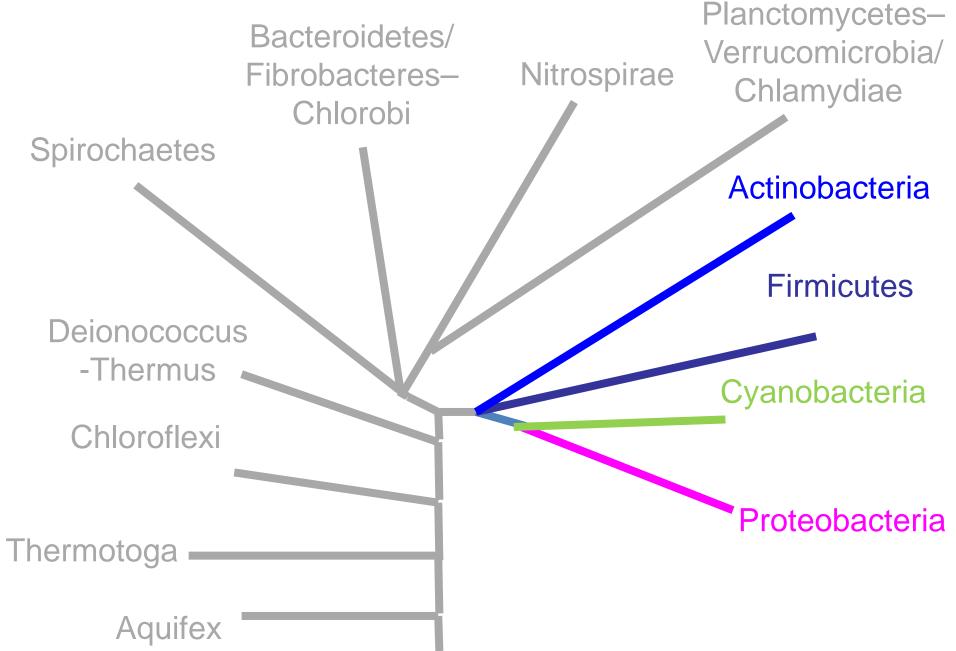

→ microorganisms sustain key soil functions

Soil microorganisms

- Abundance is decreased with depth – highest number near surface
 - input of nutrients, oxygen...
- Majority are psychrophiles or mezophiles
- Cumulation around plant roots
 rhizosphere
- Bacteria are bound to solid particles (dust...)

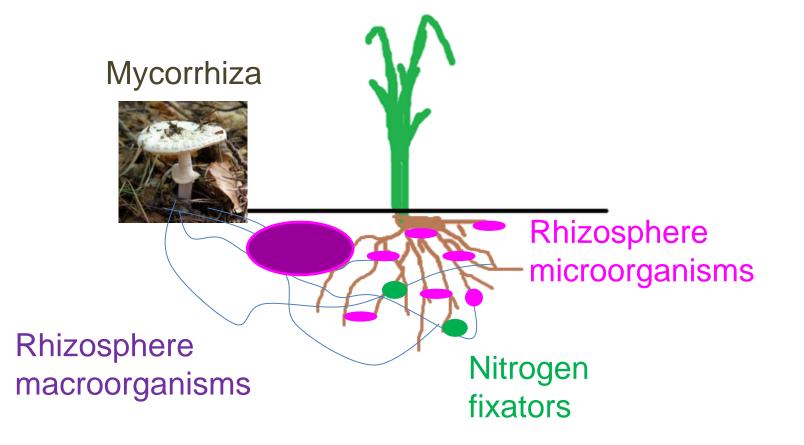


Fylogenetic tree



Fylogenetic tree

2. Plant-microbe symbioses and interactions


- Common
- Symbiosis = relationship positive or both sides
 - give and take (i.e. ∑ give < ∑ take for both sides)
 - \rightarrow easy shift to parasitism
- Plants are autotrophic → excess of organic matter
- Plants need water and nutrients provision by partner

JAN EVANGELISTA PURKYNĚ UNIVERSITY IN ÚSTÍ NAD LABEM

Faculty of the Environment

Plant microbe interactions

Majority of plants

Plant-microbe interactions

- Common
- Dominantly around roots rhizosphere
 - from greek rhizos = root
 - = soil directly affected by roots
 - includes microorganisms and higher organisms (nematodes, insects...)
 - many different relationships

UNIVERZITA J. E. PURKYNĚ V ÚSTÍ NAD LABEM

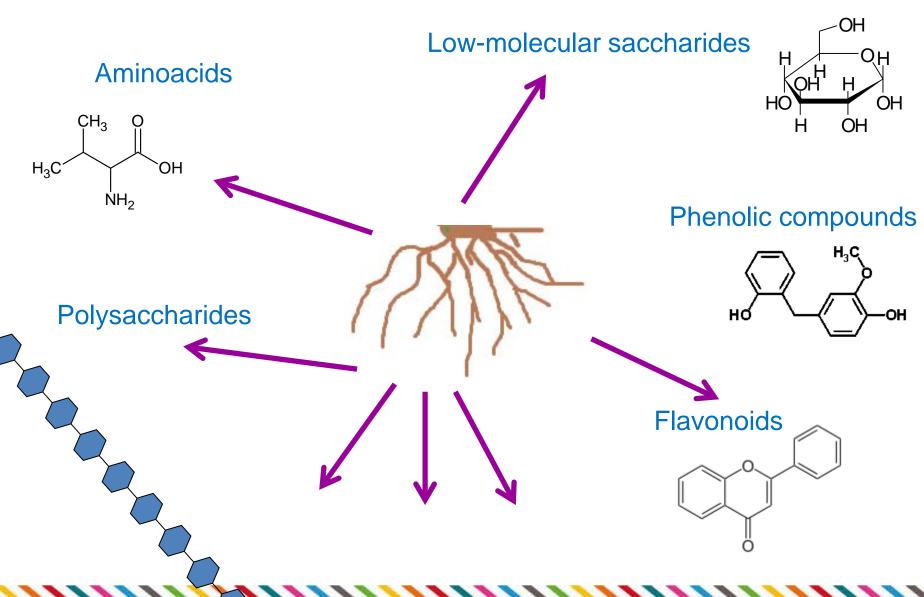
Fakulta životního prostředi

3. Rhizosphere

3. Rhizosphere

- Usually higher microbial concentrations compared to bulk soil
 - order of magnitude
- More nutrients for organisms
 - dead root cells
 - production of root exudates (organic substances)
 - estimation 17% of C fixed in photosythesis is transerred to the rhizosphere
- Establishment of food chains

Faculty of the Environment


Rhizosphere and microbes

- Soil directly affected by plant roots in vicinity of the roots
- Interactions with soil microorganisms \rightarrow
 - predominantly positive relationships (symbioses, metabioses...) between plant and microbes
 - inhibition of pathogenic microorganisms

Root exudates

- Chemicals liberated from roots to surrounding soils
 - deliberately
 - from dead root cells
- Inhibitting pathogenes
- Attracting soil-born microorganisms (chemotaxis)
- Inducing degradation pathways

Root exudates

JAN EVANGELISTA PURKYNĚ UNIVERSITY IN ÚSTÍ NAD LABEM

Faculty of the Environment

Effect of root exudates on soil organisms

- Not always clear
- Attracting partners for positive relationships (mycorrhiza, actinorrhiza...)
- "Feeding" rhizosphere microorganisms plant protection
- Fighting plant pathogenes
- Modulating microbial physiology quorum sensing, induction of methabolic pathways etc.

. . .

Implications for bio- and phytoremediations

 Stimulation of biodegradation potential / activity of microorganisms

JAN EVANGELISTA PURKYNĚ UNIVERSITY IN ÚSTÍ NAD LABEN

Faculty of the Environment

- organic nutrients for heterotrophic microorganisms
- induction of specific biodegradation pathways
- co-metabolism
- ..
- Improvement of soil parameters
- Improvement for plant growth / biomass yield
- Compatible partners for plants
- Protection of the plant

JAN EVANGELISTA PURKYNĚ UNIVERSITY IN ÚSTÍ NAD LABEM

Faculty of the Environment

4. Nitrogen fixation

Nitrogen fixation

- = diazotrophy
- Important process for fertilization of soils with N
- Significant also for water ecosystems
- $N_2 \rightarrow \dots \rightarrow NH_4^- \rightarrow organic N$
- Nitrogenase complex
- IN≡NI is very stable molecule
 - \rightarrow requires a lot of energy (12-16 ATP / N₂)
 - → provides significant evolutionary advantage = nitrogen independence
- Even N excess → often symbioses ("N for C") dominantly with plants

Nitrogen fixing microorganisms

- Bacteria only
- Symbiotic
 - rhizobia + legumes (soya, beans, pea...)
 - rhizobia + non-legumes (Parasponia, canabinacea)
 - actinobacteria (Frankia...) + actinorhizal plants
 - proteobacteria + non-legumes (Azospirilium...)
- Non-symbiotic with plants
 - cyanobacteria (dominantly not soilborn)
 - Azotobacter
 - . . .

Rhizobial symbiosis

- *Rhizobia* with legumes (pea, soya, beans...)
- Positive for both partners
- Plant provides nutrients (organic acids etc.) and O₂
- Bacteria provides N-substances (NH₃ and aminoacids) obtained by fixation of air N₂
- Covers up to 80% of nitrogen in plant biomass

Grasses

- Known symbioses of diazotrophic bacteria with grasses
- Not as well described as rhizobial
- Best described for Brazilian sugarcane
 - grow well without fertilizing with N
 - N balance is positive
- Similar for other grasses
- Research using isotope tracing of ¹⁵N

JAN EVANGELISTA PURKYNĚ UNIVERSITY IN ÚSTÍ NAD LABEM Faculty of the Environment

Miscanthus

- Described reports of *Miscanthus x giganteus* undisturbed growth without N fertilizng
- Keymer and Kent (2014): In the first year 16% of N in *M. x giganteus* biomass originates from symbiotic fixation even in N non-limiting soil
- Eckert et al. (2001): Izolation and identification of azotrophic Azospirillum doebereinerae from Miscanthus x giganteus rhizosphere
- Bourgeois et al. (2015): *M. x giganteus* stimulates various nutrient cycling bacteria and fungi including azotrophic *Rhizobiales*

UNIVERZITA J. E. PURKYNĚ V ÚSTÍ NAD LABEM

Fakulta životního prostředí

5. Mycorrhiza

- From greek Mycos = fungus, rhizos = root
- Symbiotic association between plant roots and fungal mycelia
- Estimation of up to 95% plant species
- Positive for both partners

- Fungus serves as prolonging of plant roots
 - better uptake of minerals (limiting for plant)
 - better uptake of water (limiting for plant)
- Protective effect of fungal mycelium
- Stimulation of rhizosphere
- Plant (=autotrophic) provides organic substances (carbohydrates, limiting for heterotrophic fungus)

- Better physiology of both plant and fungus in the working symbiosis
 - young trees grow faster and have higher survival rate
 - fungi grow better
 - common dependence of fungus on the plant (obligatory symbiosis) – common for basidiomycota
 - dependence of plant on fungus is less common

no

Wikimedia commons

yes

- UNIVERZITA J. E. PURKYNĚ V ÚSTÍ NAD LABEM Fakulta životního prostředí
- Endomycorrhiza fungal mycelium penetrates between plant cell wall and cell membrane
 - Up to 85% plants mostly arbuscular (through vesicels called arbuscules)
- Ectomycorrhiza fungal mycelium only wraps the root
 - ~10% plants, dominantly trees → higher
 economic significance

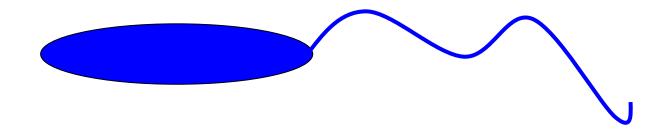
Faculty of the Environment

Mycorhizza and Miscanthus

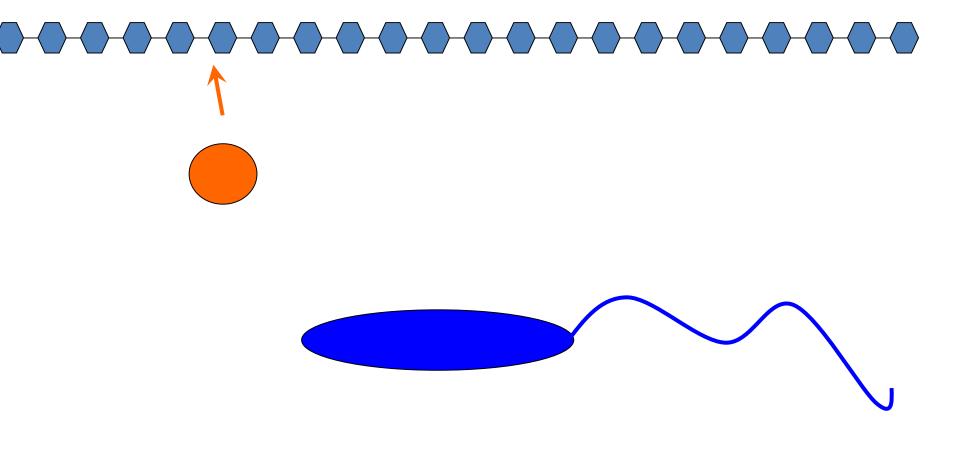
- Sarkar et al. 2015, 2017: Arbuscullar mycorrhizal fungi:
 - promoted growth of Miscanthus
 - protection against high concentration of metals
 - increased uptake of metals
 - increased growth on nutrient-limited soil
- Firmin et al. 2017: AMF
 - increased accumulation of metals in roots and shoots
 - descreased oxidative stress of *M. x giganteus* especially in leaves
- \rightarrow more research needed

Faculty of the Environment

6. Extracellular enzymes

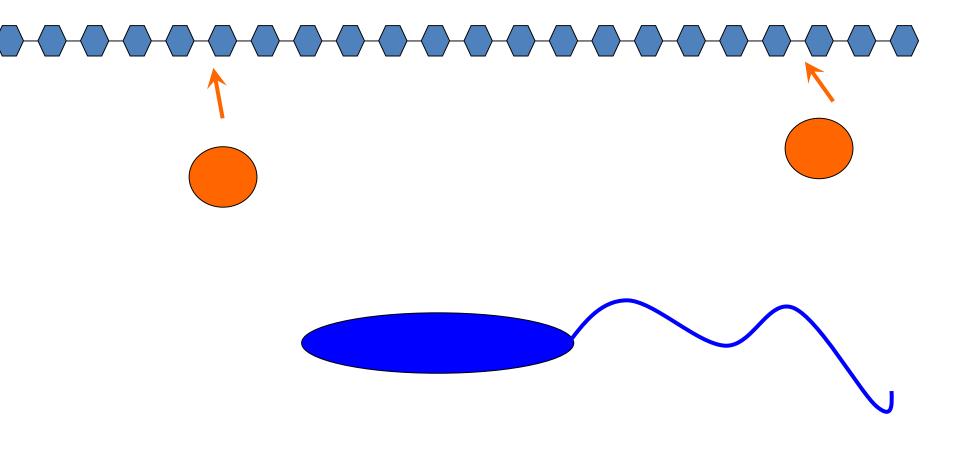

Faculty of the Environment

- Significant players in decomposition of organic matter and nutrient cycling
 - Especially for biodegradation of polymers (lignin, cellulose, chitine...) can not fit inside microbial cells
- Dominant producers of extracellular enzymes in soil:
 - bacteria
 - fungi
 - plant roots
- Extracellular enzyme activities follow
 - overall metabolic activity
 - nutrient scarcity (low $P \rightarrow$ high phosphatase activity)

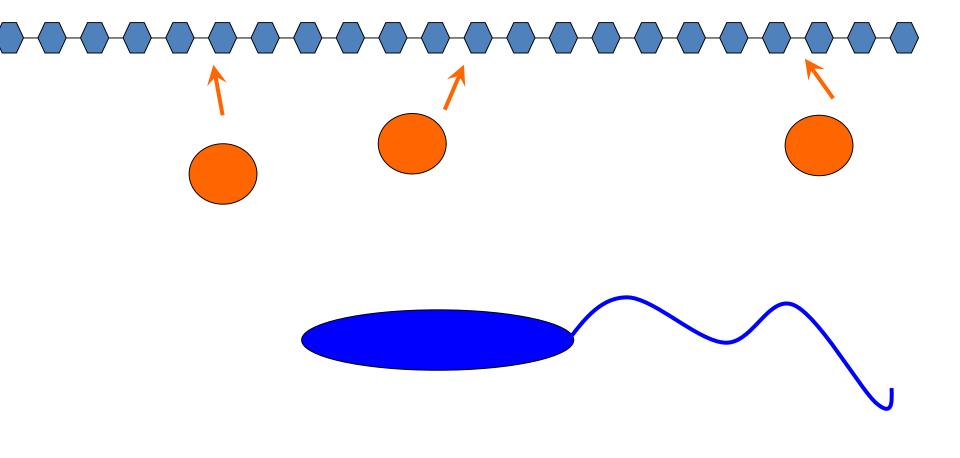

JAN EVANGELISTA PURKYNĚ UNIVERSITY IN ÚSTÍ NAD LABEM

Faculty of the Environment

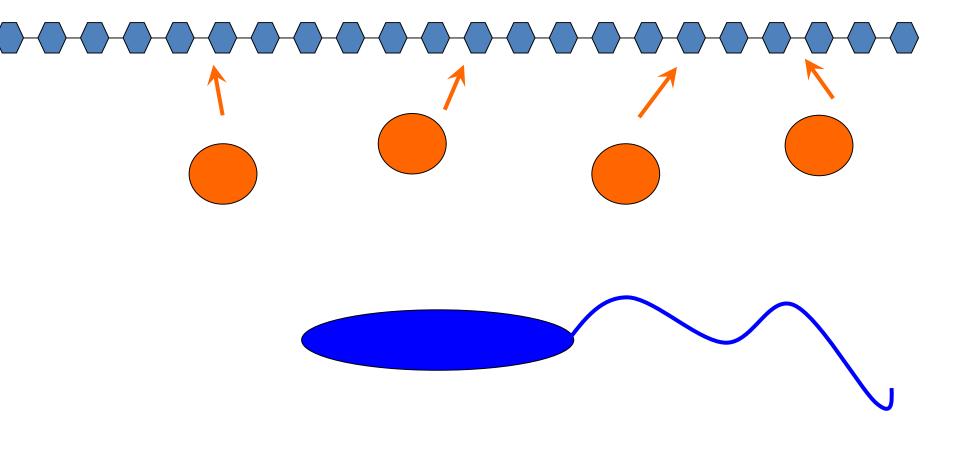
• Activity of extracellular enzymes – decomposition of polymers, involment in nutrient cycling



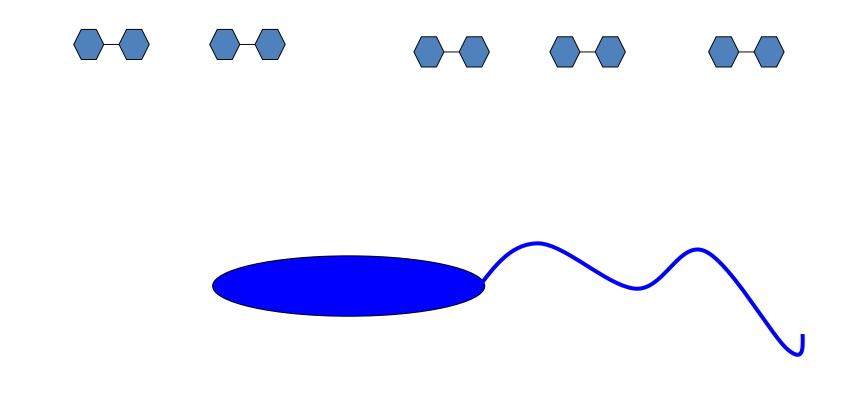
• Activity of extracellular enzymes – decomposition of polymers, involment in nutrient cycling

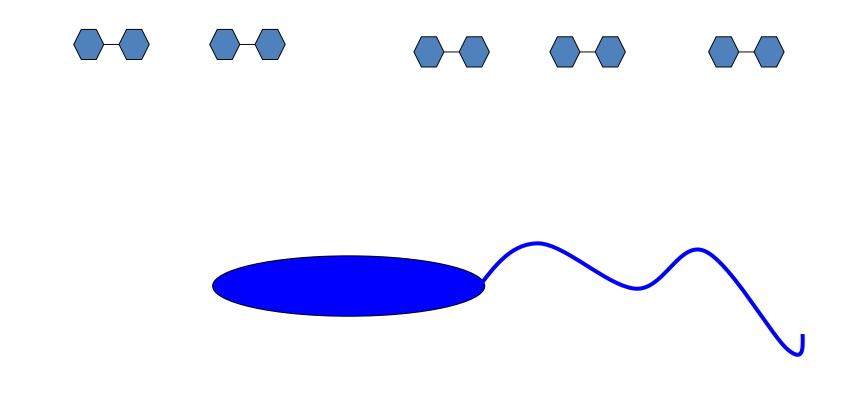

Determination of microbial activities

 Activity of extracellular enzymes – decomposition of polymers



Determination of microbial activities


• Activity of extracellular enzymes – decomposition of polymers, involment in nutrient cycling


 Activity of extracellular enzymes – decomposition of polymers

 Activity of extracellular enzymes – decomposition of polymers, involment in nutrient cycling

 Activity of extracellular enzymes – decomposition of polymers, involment in nutrient cycling

- Hydrolyses
 - phosphatases, sulphatases, proteases, celulases, chitinases...
- Oxidoreductases
 - laccases, peroxidases, oxygenases...

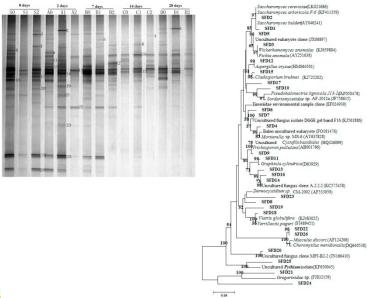
7. Methods of analyses of soil microbial communities

Faculty of the Environment

Faculty of the Environment

Methods of analyses of soil microbial communities

- Cultivation determination of Colony Forming Units
 - + covers viable microorganisms
 - only 1-2% of soil microbes cultivable


• Activity – determination of microbial activities

- enzyme activities, respiration, production / consumption of chemicals...
- + covers viable microorganisms
- dependent on conditions

Faculty of the Environment

Methods of analyses of soil microbial communities

- Genetic analyses extraction of DNA / RNA, sequencing, comparison with databases
 - + detailed information (taxonomy, abundance of taxons, metabolic potential, transcriptomics expressed genes, stress genes...)
 - costly and not as spread equipment
 - sometimes too detailed data
 (limited database data, laborious evaluation)

(A)

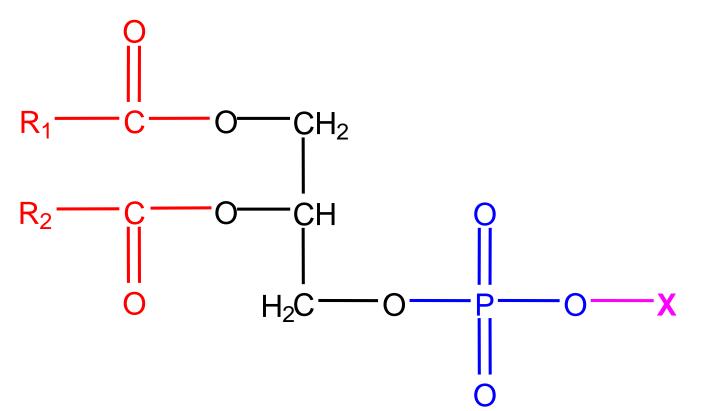
(B)

(Ling et al. 2015)

Faculty of the Environment

Methods of analyses of soil microbial communities

- Chemical analyses determination of biomarker molecules / profiles
 - + in general simpler
 - + widespread and cheaper equipment
 - not as detailed information
 - possible interferences need of careful interpretation

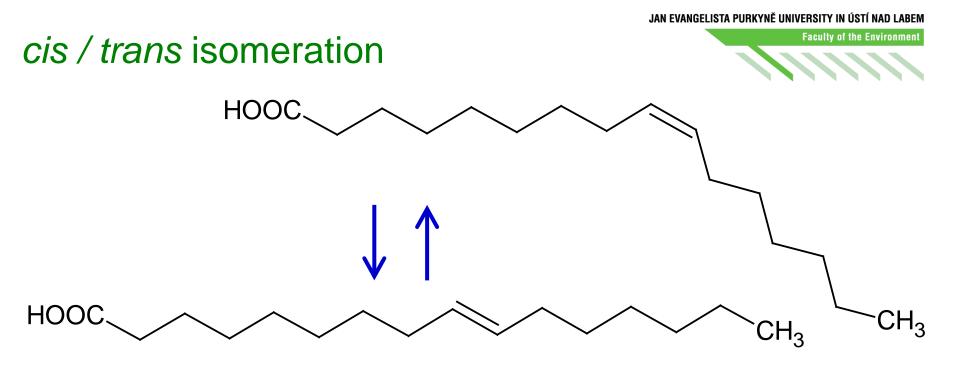

JAN EVANGELISTA PURKYNĚ UNIVERSITY IN ÚSTÍ NAD LABEM Faculty of the Environment

Biomarker molecules

- Respiration isoprenoids chinons, length of side chain
- Polysacharides surface, sheat
- Polyamines
- Mycolic acids
- Sterols eucaryotic membrane (ergosterole in fungi)
- Membrane lipids especially phospholipid fatty acid profiles

Faculty of the Environment

Phospholipids


 R_1 , R_2 – fatty acid acyls X – hydrophilic groups

Phospholipids

- *In vivo* in membranes only
 - cytoplsmatic
 - outer membrane of G- bacteria
 - inner membranes of eukaryotes
- Never storage compounds → ~proportional content to biomass
- Fast decomposition after cell death → estimation of living biomass

Community biomarker fatty acids

Group	subgroup	Biomarker fatty acids
Bacteria	G+	i14:0, i15:0, a15:0, i17:0, a17:0
	G-	cy17:0, cy19:0, 18:1w7
	Actinobacteria	10Me-16:0, 10Me-17:0,
		10Me-18:0
	Other	16:1ω7t, 16:1ω7, 16:1ω9,
Fungi		18:2ω6,9
Protozoa		20:4ω6

- Bacteria
- Changes directly in membrane
- trans / cis index
- general stress indicator
- (18:1ω7+16:1ω7) / (16:1ω7t+18:1ω7t)
- >0.1 → soil disturbation and stress

Faculty of the Environment

CH₃

Cyclization of monounsaturated FA

• G- bacteria

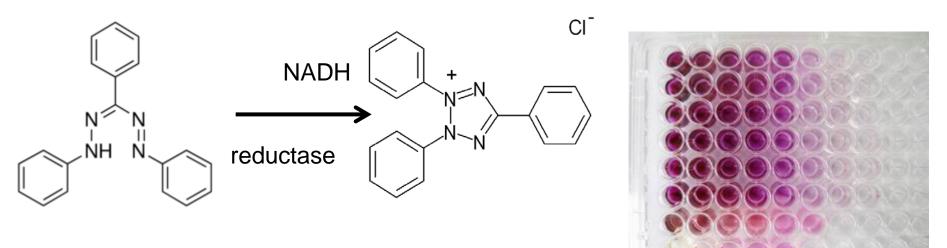
HOO

- upon transition to stationary growth phase
- mainly nutrition indicator ("hunger index")
- (cy17:0 + cy19:0)
 / (16:1ω7 + 18:1ω7)

HOO

cy / pre

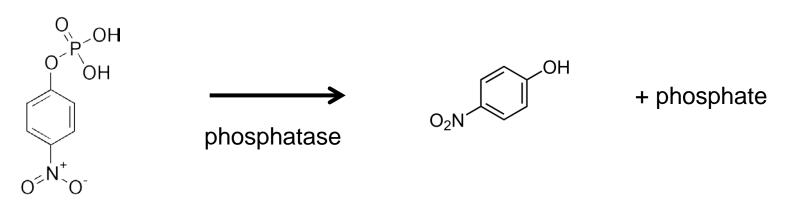
JAN EVANGELISTA PURKYNĚ UNIVERSITY IN ÚSTÍ NAD LABEM **Determination of microbial activities**


- Completes biomass data with indication of activities
- comparison of living biomass vers. activities gives useful information about overall state of community
- Activity of extracellular enzymes decomposition of polymers

Faculty of the Environment

Respiration – analyses of O_2 consumption or CO_2 production

Tetrazolium assay


- Based of reduction of triphenyltetrazolium to triphenylphormazan
 - pink spectrophotometric determination at 546 nm)
- Substrate of many oxidoreductases

• determines overall activity of soil or sludge

pNP assay

- Hydrolysis of pNP-X to p-nitrofenyl phosphate and X
- Determination of yellow pNP (pH >7, 400 nm)
- Many variants phosphatases, sulphatases, proteases, glucosidases, chitinases...

JAN EVANGELISTA PURKYNĚ UNIVERSITY IN ÚSTÍ NAD LABEM

Faculty of the Environment

8. A few research results

Aim of our research

 Phytoremediation = use of plants for elimination / detoxification of pollutants from soil

JAN EVANGELISTA PURKYNĚ UNIVERSITY IN ÚSTÍ NAD LABEM

Faculty of the Environment

- Relation of microbial communities to soil cover = use of plants for elimination / detoxification of pollutants from soil
- Evaluation of human effects on soil microorganisms

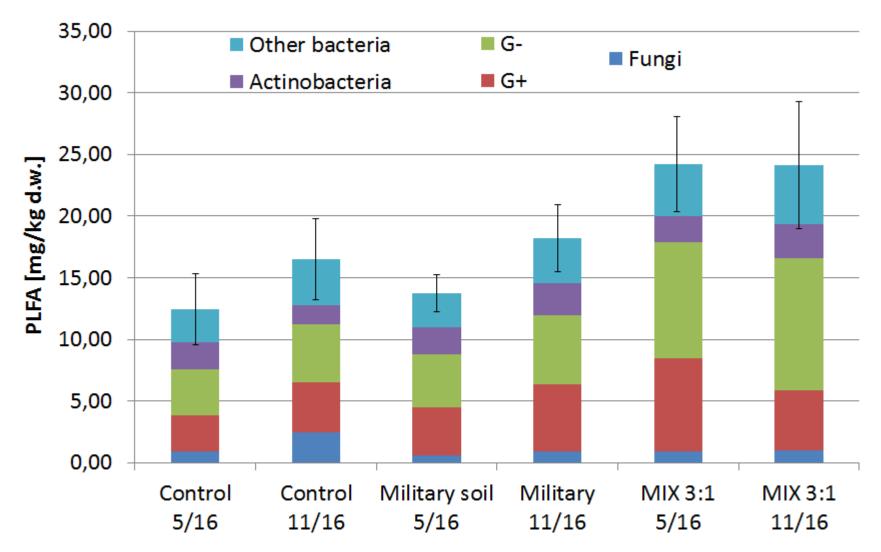
Pot experiment Sliač, Slovakia – soil

parametres

Parametr		2014	2015		
Available nutrients (Mehlich III) [mg/kg dry soil]	Р	89 ± 67	78 ± 67		
	К	375 ± 110	329 ± 94		
	Са	3283 ± 214	3269 ± 274		
	Mg	666 ± 66	695 ± 72		
Elementary analysis [% dry soil]	N _{tot}	0.24 ± 0.06	0.20 ± 0.04		
	Н	0.57 ± 0.05	0.56 ± 0.05		
	S	0.040 ± 0.014	0.028 ± 0.009		
TOC [% dry soil]		2.83 ± 0.68	2.91 ± 0.82		
Humus [% dry so	il]	4.12 ± 0.94 3.70 ± 0.82			

Pot experiment Sliač, Slovakia – PLFA

Indicator	Rhizosphere soil			Bulk soil			
Indicator	2014	2015		2014	2015		
PLFA _{tot} [mg/kg]	5.95 - 7.07	4.53 - 7.38	-	6.73 - 8.01	5.79 - 7.90	-	
F/B []	0.00 - 0.01	0.04 - 0.08		0.00 - 0.01	0.04 - 0.16		
G+ [%]	31.6 - 34.2	37.7 - 40.3		32.8 - 34.6	30.9 - 40.1	-	
G- [%]	32.7 - 37.4	37.0 - 30.9	\checkmark	32.27 - 36.44	26.8 – 36.9	-	
Actinobacteria [%]	18.8 - 21.6	5.16 - 6.49	\checkmark	18.2 – 20.6	3.9 - 6.3	↓	
Other bacteria [%]	11.1 – 11.9	23.1 - 24.2	1	11.4 – 12.5	22.1 - 24.0		
Fungi [%]	0.1 - 0.6	1.6 - 3.4	1	0.3 – 0.9	1.5 - 7.5		
trans/cis	0.38 - 0.43	0.37 - 0.41	-	0.40 - 0.48	0.38 - 0.43	-	
cy/pre	0.44 - 0.50	0.30 - 0.37	\checkmark	0.51 - 0.57	0.30 - 0.39	\checkmark	


confidence intervals, significant (t-test, α <0.05) increase \uparrow decrease \downarrow between years

Pot experiment Sliač, Slovakia – activities

Indicator	Rhizosphere soil			Bulk soil			
Indicator	2014	2015		2014	2015		
Phosphatases [U/g]	0.056 - 0.063	0.039 - 0.048	↓	0.059 - 0.070	0.038 - 0.051	\checkmark	
Arylsulphatases [U/g]	0.0035 - 0.0041	0.0029 - 0.0034	↓	0.0031 - 0.0037	0.0029 - 0.0039	-	
Proteases [U/g]	0.028 - 0.036	0.035 - 0.049	-	0.030 - 0.035	0.034 - 0.050	-	
Oxidases [U/g.10 ⁻⁵]	2.18 - 2.87	1.50 - 1.95	↓	2.07 - 2.63	1.55 - 1.94	\checkmark	
Peroxidases [U/g.10⁻ ⁵]	0.71 - 1.27	2.21 - 2.69		0.71 - 1.08	2.26 - 2.71		
Respiration [nmol/g/min]	1.47 - 2.30	2.98 - 4.66		1.66 - 2.57	1.71 - 2.92	-	

confidence intervals, significant (t-test, α <0.05) increase \uparrow decrease \downarrow between years

PLFA (spring/autumn)


UNIVERZITA J. E. PURKYNĚ V ÚSTÍ NAD LABEM

Fakulta životního prostředí

Pot experiment

Post-military soil + oil contaminated soil

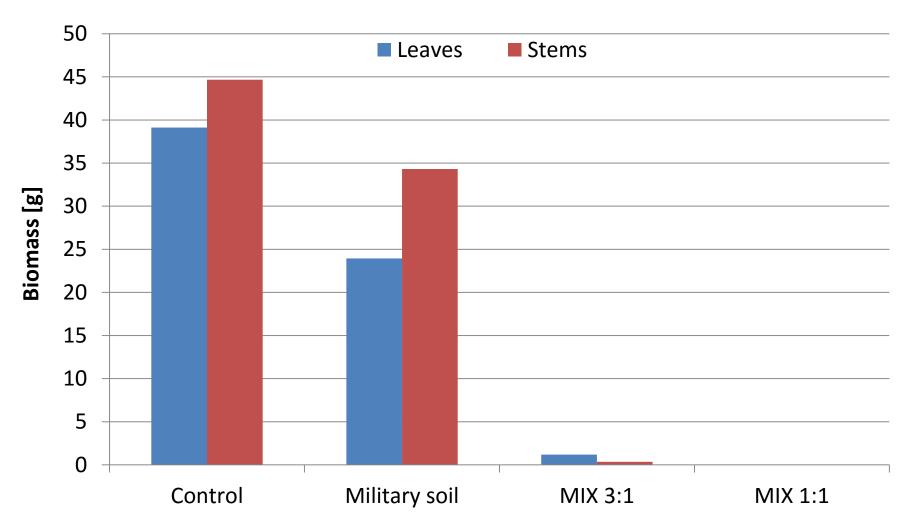
UNIVERZITA J. E. PURKYNĚ V ÚSTÍ NAD LABEM

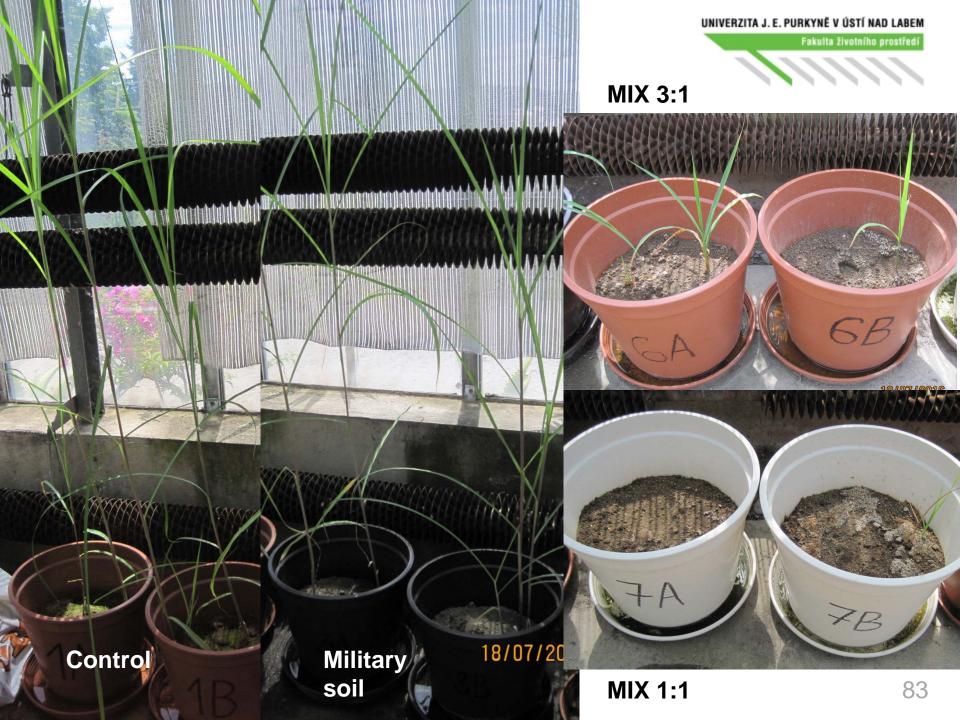
Fakulta životního prostředí

Soil parametres

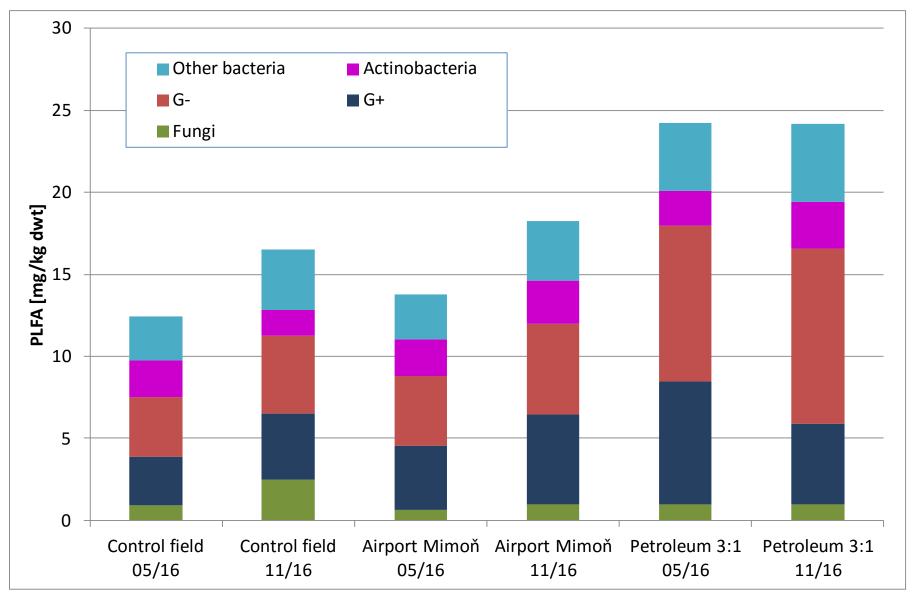
• ICP-OES, GC-FID

	Prev. v.** [mg/kg]	Con	trol	Milita	ry soil	MI	(3:1	MIX	1:1
		[mg/kg]	BF [%]*	[mg/kg]	BF [%]*	[mg/kg]	BF [%]*	[mg/kg]	BF [%]*
C ₁₀ -C ₄₀	100	<ld< th=""><th>x</th><th><ld< th=""><th>х</th><th>8537</th><th>х</th><th>21290</th><th>x</th></ld<></th></ld<>	x	<ld< th=""><th>х</th><th>8537</th><th>х</th><th>21290</th><th>x</th></ld<>	х	8537	х	21290	x
Cd	0,4	1,7	<ld< th=""><th>0,9</th><th><ld< th=""><th>2,1</th><th><ld< th=""><th>2,9</th><th><ld< th=""></ld<></th></ld<></th></ld<></th></ld<>	0,9	<ld< th=""><th>2,1</th><th><ld< th=""><th>2,9</th><th><ld< th=""></ld<></th></ld<></th></ld<>	2,1	<ld< th=""><th>2,9</th><th><ld< th=""></ld<></th></ld<>	2,9	<ld< th=""></ld<>
Со	20	19,1	<ld< th=""><th>25,2</th><th><ld< th=""><th>41,0</th><th><ld< th=""><th>56,9</th><th><ld< th=""></ld<></th></ld<></th></ld<></th></ld<>	25,2	<ld< th=""><th>41,0</th><th><ld< th=""><th>56,9</th><th><ld< th=""></ld<></th></ld<></th></ld<>	41,0	<ld< th=""><th>56,9</th><th><ld< th=""></ld<></th></ld<>	56,9	<ld< th=""></ld<>
Cu	45	<ld< th=""><th><ld< th=""><th>19,4</th><th>26,3</th><th>52,9</th><th>10,6</th><th>84,1</th><th>10,0</th></ld<></th></ld<>	<ld< th=""><th>19,4</th><th>26,3</th><th>52,9</th><th>10,6</th><th>84,1</th><th>10,0</th></ld<>	19,4	26,3	52,9	10,6	84,1	10,0
Pb	55	15,2	<ld< th=""><th>73,2</th><th><ld< th=""><th>86,1</th><th><ld< th=""><th>91,8</th><th><ld< th=""></ld<></th></ld<></th></ld<></th></ld<>	73,2	<ld< th=""><th>86,1</th><th><ld< th=""><th>91,8</th><th><ld< th=""></ld<></th></ld<></th></ld<>	86,1	<ld< th=""><th>91,8</th><th><ld< th=""></ld<></th></ld<>	91,8	<ld< th=""></ld<>
Zn	105	38,8	25,5	308,5	39,9	312,0	30,4	292,1	32,5


* Bioavailable fraction (fraction I according to BCR - extraction 0,11 M CH₃COOH)


** Preventive value in agricultural soil according to Act n. 153/2016 Sb. (CZ)

UNIVERZITA J. E. PURKYNĚ V ÚSTÍ NAD LABEM


Fakulta životního prostředí

Results – biomass (1st year)

UJEP preliminary greenhouse experiment – PLFA

References

- UNIVERZITA J. E. PURKYNĚ V ÚSTÍ NAD LABEM Fakulta životního prostředí
- Bourgeois, E.; Dequiedt, S.; Lelievre, M.; van Oort, F.; Lamy, I.; Ranjard, L.; Maron, P.A. Miscanthus bioenergy crop stimulates nutrient-cycler bacteria and fungi in wastewatercontaminated agricultural soil. *Environmental Chemistry Letters* **2015**, *13*, 503-511.
- Eckert, B.; Weber, O.B.; Kirchhof, G.; Halbritter, A.; Stoffels, M.; Hartmann, A. Azospirillum doebereinerae sp nov., a nitrogen-fixing bacterium associated with the c-4-grass miscanthus. *International Journal of Systematic and Evolutionary Microbiology* **2001**, *51*, 17-26.
- Firmin, S.; Labidi, S.; Fontaine, J.; Laruelle, F.; Tisserant, B.; Nsanganwimana, F.; Pourrut, B.; Dalpe, Y.; Grandmougin, A.; Douay, F., *et al.* Arbuscular mycorrhizal fungal inoculation protects miscanthus x giganteus against trace element toxicity in a highly metal-contaminated site. *Science of the Total Environment* **2015**, *527*, 91-99.
- Keymer, D.P.; Kent, A.D. Contribution of nitrogen fixation to first year miscanthus x giganteus. *Global Change Biology Bioenergy* **2014**, *6*, 577-586.
- Ling, J.; Zhang, Y.Y.; Wu, M.L.; Wang, Y.S.; Dong, J.D.; Jiang, Y.F.; Yang, Q.S.; Zeng, S.Q. Fungal community successions in rhizosphere sediment of seagrasses enhalus acoroides under pahs stress. *International Journal of Molecular Sciences* **2015**, *16*, 14039-14055.
- Rojrbacher F.; St.-Arnaud. Root Exudation: The Ecological Driver of Hydrocarbon Rhizoremediation. *Agriculture* **2016**, 6, 19.
- Sarkar, A.; Asaeda, T.; Wang, Q.Y.; Kaneko, Y.; Rashid, M.H. Response of miscanthus sacchariflorus to zinc stress mediated by arbuscular mycorrhizal fungi. *Flora* **2017**, *234*, 60-68.
- Sarkar, D.; Ferguson, M.; Datta, R.; Birnbaum, S. Bioremediation of petroleum hydrocarbons in contaminated soils: Comparison of biosolids addition, carbon supplementation, and monitored natural attenuation. *Environmental Pollution* **2005**, *136*, 187-195.

Acknowledgment

- Prof. Valentina Pidlisnyuk
- Students D. Nebeská, A. Medžová, M. Holubová, M. Smaha
- Hana Malinská
- Technicians J. Štojdl, L. Seidlová, P. Veronesi-Dáňová
- NATO SPS MYP G4687 New Phytotechnology for Cleaning Contaminated Military Sites

This activity

is supported by:

The NATO Science for Peace and Security Programme

Thank you for your attention