Growing Miscanthus in Contaminated Soil

Kraig Roozeboom, Cropping Systems Zafer Alasmary, Ph.D. Student, Soil Chemistry Department of Agronomy Kansas State University

Outline

- Miscanthus as a biofuel feedstock
 - Management
 - Productivity
- Miscanthus for phytoremediation
 - Management considerations
 - Phytostabilization

- Fort Riley Project
 - Objectives
 - Methods

G

Initial results

References

- Arundale, R.A., F.G. Dohleman, E.A. Heaton, J.M. McGrath, T.B. Voigt, and S.P. Long. 2013. Yields of *Miscanthus* × *giganteus* and *Panicum virgatum* decline with stand age in the Midwestern USA. GCB Bioenergy. DOI 10.1111/gcbb.12077
- Lee, D.K., A.S. Parrish, and T.B. Voigt. 2014. Switchgrass and giant Miscanthus agronomy. In E.Y. Shastri, A. Hansen, L. Rodríguez, K. Ting, editors, Engineering and Science of Biomass Feedstock Production and Provision. Springer, New York. p. 37-59. DOI 10.1007/978-1-4899-8014-4_3
- Pyter, R., T. Voigt, E. Heaton, F. Dohlman, S. Long. 2007. Growing giant Miscanthus in Illinois. Univ. of Illinois, Urbana-Champaign.
- Yost, M.A., B.K. Randal, N.R. Kitchen, E.A. Heaton, and R.L. Myers. 2017. Yield Potential and Nitrogen Requirements of *Miscanthus* × *giganteus* on Eroded Soil. Agron. J. 109:684–695. doi:10.2134/agronj2016.10.0582
- Alasmary, Z.S., G.M. Hettiarachchi, K.L. Roozeboom, L.C. Davis, L.E. Erickson, A. Nurzanova, T. Stefanovska, V. Pidlisnyuk, and M,B, Kirkham. 2017. Field-based investigations on stabilization of a contaminated military site via combined use of soil amendments and biofuel crop growth. Agronomy Abstracts. ASA, CSSA, SSSA. Madison, WI.
- McGowan, A.R. 2015. Biofuel cropping system impacts on soil C, microbial communities and N₂O emissions. Ph.D. diss. Kansas State Univ., Manhattan.
- Propheter, J.L., S.A. Staggenborg, X. Wu, and D. Wang. 2010. Performance of Annual and Perennial Biofuel Crops: Yield during the First Two Years. Agron. J. 102:806–814. doi:10.2134/agronj2009.0301

Miscanthus × *giganteus* adaptation in U.S.

- Seasonal growth of established stand in temperate areas of northern hemisphere
 - April emergence
 - June 1 to 2 m height
 - September peak biomass
 - Frost senescence begins
 - December to late March full senescence and harvest
- Water is typically most yield-limiting factor
 - 75 cm annual precipitation recommended for "Illinois" type
- Recommended soils
 - Wide range of textures (organic to sandy)
 - pH 5.5 to 7.5
 - Well drained

Miscanthus × *giganteus* establishment

- Mid-April through May
- 30 60 g rhizomes
- Density of $1 4 \text{ m}^{-2}$
- 10 cm depth in **tilled** soil
- Weed control (acetochlor, acetochlor + atrazine, 2,4-D)
- Irrigation?

Miscanthus × *giganteus* established stands

- Management of stands \geq yr 2
 - Rapid canopy closure suppresses invading weeds
 - Few/no pests that reduce yields
 - Mixed results re N fertilization
 - Native soil fertility
 - Age of stand
 - N deposition
- Harvest management
 - After full senescence and before spring emergence
 - Later (spring) harvest:
 - Dryer biomass
 - Less stand reduction

Miscanthus × *giganteus* yield decline over time (no fertilization)

- (a) Observed end-of-season dry matter biomass yield (Mg ha 1) of Miscanthus 9 giganteus (●) and Panicum virgatum 'Cave-in-Rock' (○) pooled across seven location within Illinois for the third through tenth growing seasons. Points represent arithmetic means ±SE. Solid lines represent cubic fit to observed lines.
- (b) As for (a), but with yields corrected for year-to-year variation in temperature growing degree-days (GDD10) and in soil moisture (PHDI) by recalculating yield with constant values of these two variables, where the constant values used were the averages across the years of the trials at each site

R.A. Arundale, F.G. Dohleman, E.A. Heaton, J.M. McGrath, T.B. Voigt, and S.P. Long. 2013. Yields of *Miscanthus* × *giganteus* and *Panicum virgatum* decline with stand age in the Midwestern USA. GCB Bioenergy. DOI 10.1111/gcbb.12077

Miscanthus × *giganteus* response to N fertilizer in Illinois

Mxg model: Yield=23.4 + 0.027 nitrogen, R²=0.97.

R.A. Arundale, F.G. Dohleman, T.B. Voigt, and S.P. Long. 2013. Nitrogen fertilization does significantly increase yields of stands of *Miscanthus* × *giganteus* and *Panicum virgatum* in multiyear trials in Illinois. Bioenerg. Res. DOI 10.1007/s12155-013-9385-5

N₂O emissions and N fertilization (Switchgrass, *Panicum virgatum*)

Bars with the same letter are not significantly different (α =0.05); 200 kg N ha⁻¹ rate for 1 yr only.

A.R. McGowan. 2015. Biofuel cropping system impacts on soil C, microbial communities and N₂O emissions. Ph.D. diss. Kansas State Univ., Manhattan.

N₂O emissions Manhattan, KS

Bars with the same letter within a year are not significantly different (α =0.05).

A.R. McGowan. 2015. Biofuel cropping system impacts on soil C, microbial communities and N_2O emissions. Ph.D. diss. Kansas State Univ., Manhattan.

Dedicated bioenergy crops

Dedicated bioenergy crops

Grass Mix. Big Bluestem

Productivity of several biomass crops over ten years

Symbols followed by the same letter within a year are not significantly different (α =0.05).

ANGAS

IVERSITY

UN

A.R. McGowan. 2015. Biofuel cropping system impacts on soil C, microbial communities and N_2O emissions. Ph.D. diss. Kansas State Univ., Manhattan.

Biomass-scaled N₂O emissions Manhattan, KS

Bars with the same letter within a year are not significantly different (α =0.05).

A.R. McGowan. 2015. Biofuel cropping system impacts on soil C, microbial communities and N₂O emissions. Ph.D. diss. Kansas State Univ., Manhattan.

Soil Aggregate Size

Samples taken after 7 years of cropping; annuals were rotated with soybeans and appeared every-other year. Bars with the same letter are not significantly different (α =0.05).

A.R. McGowan. 2015. Biofuel cropping system impacts on soil C, microbial communities and N₂O emissions. Ph.D. diss. Kansas State Univ., Manhattan.

Water-stable Macroaggregates (>250 µm)

Samples taken after 7 years of cropping; annuals were rotated with soybeans and appeared every-other year. Bars with the same letter are not significantly different (α =0.05).

A.R. McGowan. 2015. Biofuel cropping system impacts on soil C, microbial communities and N_2O emissions. Ph.D. diss. Kansas State Univ., Manhattan.

Surface residue January 9, 2018

Effect of crop on total root stocks 0-120 cm depth

Samples taken after 7 years of cropping; annuals were rotated with soybeans and appeared every-other year. Bars with the same letter are not significantly different (α =0.05).

A.R. McGowan. 2015. Biofuel cropping system impacts on soil C, microbial communities and N₂O emissions. Ph.D. diss. Kansas State Univ., Manhattan.

Effect of crop on total root stocks 0-120 cm depth

Samples taken after 7 years of cropping; annuals were rotated with soybeans and appeared every-other year.

A.R. McGowan. 2015. Biofuel cropping system impacts on soil C, microbial communities and N_2O emissions. Ph.D. diss. Kansas State Univ., Manhattan.

Miscanthus × *giganteus* summary

- Biomass feedstock Pros:
 - Well adapted perennial
 - Highly productive (C4)
 - Drought tolerance
 - Frost tolerance
 - Growth at cool temperatures (>12°C)
 - Positive energy input:output ratio
 - Asexual propagation (minimizes invasive risk)
 - Particularly well-suited to phytostabilization
 - Combines relatively high productivity with improved soil structure and minimal negative environmental impacts
- Biomass feedstock Cons:
 - Asexual propagation
 - Cold & drought tolerance during establishment
 - Variable biomass composition
 - Harvest timing, growing conditions, nutrient inputs

FIELD-BASED INVESTIGATIONS ON PHYTOSTABILIZATION OF A CONTAMINATED MILITARY SITE USING BIOFUEL CROP GROWTH ASSISTED WITH SOIL AMENDMENTS

Zafer Almasary¹, Ganga M. Hettiarachchi¹, Kraig L. Roozeboom¹, Lawrence C. Davis¹, Larry E. Erickson¹, Mary Beth Kirkham¹, Valentina Pidlisnyuk², Tetyana Stefanovska³, Azil Nurzanova⁴, and Josef Trogl²

Project

¹Kansas State University, U.S.A.

²Jan Evangelista Purkyne University, Czech Republic ³National University of Life and the Environment, Ukraine ⁴Institute of Plant Biology and Biotechnology, Kazakhstan

NATIONAL UNIVERSITY OF LIFE AND ENVIRONMENTAL SCIENCES OF UKRAINE

Funded by

Period: 2016-2019 Grant: Science for Peace and Security (SPS) Program Multiyear Research Project (MYP) G4687

Introduction

- Military activities cause significant pollution
- Phytoremediation
- Second-generation biofuel crop Miscanthus x giganteus (M x g)

Selected Properties of the Fort Riley, U.S.A. Site Soil

Soil property	
pH (1:10 soil: water)	6.9
CEC, cmol ₊ kg ⁻¹	19.5
Sand, silt, and clay, %	11.3, 59.8, 28.9 silty clay loam
Mehlich III-P, mg kg ⁻¹	40.8
Total Pb, mg kg ⁻¹	1231

Study site: Fort Riley, KS (<u>39°11′30″N 96°35′30″W</u>), Former skeet shooting range

Specific Objectives

- To evaluate how different establishment methods and soil amendments affect plant productivity, Pb concentration, and soil Pb stability
- To evaluate the effects of continual plant growth, nutrient removal and the soil chemical changes induced by miscanthus growth on soil Pb bioaccessibility

Materials and Methods

- A small-plot field study initiated in spring 2016 at Fort Riley, Kansas, U.S.A
- Plot size 1.83m x 1.83m
 plant spacing of 0.46m
- Experimental design:
 Randomized complete block with four replications

Analyses Soil

- Soil total Pb determined USEPA method SW846-3051A (USEPA,2007a)
- <u>Physiologically Based Extraction Test procedure</u>(**PBET**) modified by Ruby et al. (1996)
- Pb concentration measured after digestion or extraction using ICP-OES

Plant

- Plant Pb determined using a modified USEPA method SW846- 3052
- Pb concentration measured after digestion using GF-AAS

Treatments Second-generation biofuel crop *Miscanthus* x *giganteus* (Mxg)

Treatments:		
1	Control	Leave existing vegetation in place with no amendments
2	M×g-No-till	Kill existing vegetation, plant M×g directly into undisturbed soil, no amendments
3	M×g-Till	Kill existing vegetation, till to depth of ~10 cm before planting M×g, no amendments
4	M×g-Till + TSP	Kill existing vegetation, incorporate P fertilizer to depth of 10 to 15 cm to influence lead chemistry in surface soil before planting M×g (5:3 Pb:P molar ratio)
5	M×g-Till + Biosolids	Kill existing vegetation, incorporate biosolids to depth of 10 to 15 cm to influence lead chemistry in surface soil before planting M×g (45 Mg ha ⁻¹)

Biosolids

Class B Biosolids from the Oakland Wastewater Treatment Plant, Topeka, KS (Anaerobic digestion belt press)

Pb = 59 mg/kg Cd= n.d. Fe = 11,200 mg/kg Total P = 25,900 mg/kg Total N= 75,600 mg/kg Total org. N= 67,700 mg/kg

KANSAS STATE

Plastic borders around plots with P fertilizer or biosolids added to prevent erosion; visible alleyways between plots

On-going and future studies

- Greenhouse experiments (large pots) with more treatments (on-going)
- More detailed soil analysis (next step)
 - Speciation of Pb
 - Soil quality parameters

